File size: 5,473 Bytes
ac1eff7
 
 
 
 
bc0db31
 
ac1eff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f245e68
 
 
 
 
 
 
 
 
 
 
 
ac1eff7
 
 
 
 
 
f245e68
ac1eff7
f245e68
ac1eff7
 
 
 
 
 
f245e68
ac1eff7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import gradio as gr
import cohere
from typing import Generator
from langchain_chroma import Chroma
# from langchain_huggingface import HuggingFaceEmbeddings
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.schema.document import Document
from typing import List


class HFSpaceChatBot:
    """
    A chatbot powered by Retrieval Augmented Generation (RAG) aimed
    to be deployed on the Hugging Face Space platform.
    """

    def __init__(self,
                 embedding_model_path: str,
                 vector_database_path: str,
                 top_k: int = 10,
                 embedding_model_name: str = os.getenv("EMBEDDING_MODEL"),
                 api_key: str = os.getenv("CO_API_KEY"),
                 device: str = os.getenv("DEVICE"),
                 system_prompt: str = "Answer the user's question",
                 **kwargs) -> None:
        """
        Constructor for the HFSpaceChatBot class.

        Args:
            embedding_model_path (str): The path to the embedding model.
            vector_database_path (str): The path to the vector database.
            top_k (int): The number of top documents to retrieve.
            embedding_model_name (str): The name of the embedding model.
            api_key (str): The API key for the cohere API.
            device (str): The device to run the model on.
            system_prompt (str): The system prompt for the chatbot.
            **kwargs: Additional keyword arguments (for the cohere API)
        """

        self.chat_history = []
        self.cclient = cohere.Client(api_key=api_key)

        self.embedding_model = HuggingFaceEmbeddings(
            model_name=embedding_model_name,
            model_kwargs={"device": device},
            encode_kwargs={"normalize_embeddings": True},
            cache_folder=embedding_model_path
        )

        self.vector_database = Chroma(
            persist_directory=vector_database_path,
            embedding_function=self.embedding_model
        )

        self.top_k = top_k

        self.system_prompt = system_prompt

        self.model_params = kwargs

    def _get_relevant_information(self,
                                  message: str) -> List[Document]:
        """
        Get the relevant information from the chat history.

        Args:
            message (str): The message to search for.

        Returns:
            List[Document]: A list of relevant documents.
        """

        return self.vector_database.similarity_search(message, self.top_k)

    def _fetch_response(self,
                        message: str,
                        *args) -> Generator[str, None, None]:
        """
        Fetch the reponse from the cohere API.

        Args:
            message (str): The message of the user.

        Returns:
            Generator[str, None, None]: A generator yielding the output tokens.
        """

        docs = self._get_relevant_information(message)

        relevant_information = "\n".join(
            [doc.page_content
             for doc in docs])

        final_message = f"{self.system_prompt}\nWith the help of the\
                        following context:\n{relevant_information}\n\
                        Answer the following question:\n{message}"

        response = self.cclient.chat_stream(
            message=final_message,
            chat_history=self.chat_history,
            **self.model_params
        )

        current_text = ""
        for event in response:
            if event.event_type == "text-generation":
                current_text += event.text
                yield current_text

        self.chat_history.append({
            "role": "USER",
            "text": message
        })

        self.chat_history.append({
            "role": "CHATBOT",
            "text": current_text
        })

    def launch(self,
               title: str,
               description: str) -> None:
        """
        Launch the chat interface.

        Args:
            title (str): The title of the chat interface.
            description (str): The description of the chat interface.
        """

        gr.ChatInterface(
            fn=self._fetch_response,
            title=title,
            description=description
        ).launch()


# if __name__ == "__main__":

embedding_model_path = os.path.join(os.getcwd(), "model")
system_prompt = """You are now assuming the role of the personal assistant
                   of Ilan ALIOUCHOUCHE, a French Computer Science student.
                   Your task is to assist users by answering their
                   questions about Ilan. You have access to comprehensive
                   details about Ilan's education, skills, professional
                   experience, and interests.
                   """.replace("\n", "")

chatbot = HFSpaceChatBot(
        embedding_model_path=embedding_model_path,
        vector_database_path=os.path.join(os.getcwd(), "chromadb"),
        system_prompt=system_prompt,
        temperature=0.4
    )

title = "🤖 Ilan's Personal Agent 🤖"

description = """
    You can ask my assistant (almost) anything about me! :D

    You are currently using the Hugging Face Space version 🤗. A Docker image 🐳 for local use, utilizing a GGUF model is also available [here](https://github.com/ilanaliouchouche/my-ai-cv/pkgs/container/my-cv)

    """

chatbot.launch(
        title=title,
        description=description
    )