Spaces:
Running
Running
File size: 7,845 Bytes
cc3f1c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import json
import os
import time
import uuid
import tempfile
from PIL import Image
import gradio as gr
import base64
from google import genai
from google.genai import types
class ImageEditor:
def __init__(self):
self.model_name = "gemini-2.0-flash-exp"
def save_file(self, file_path, data):
"""Save binary data to a file"""
with open(file_path, "wb") as f:
f.write(data)
def get_client(self, api_key):
"""Initialize and return a Gemini client"""
key = api_key.strip() if api_key and api_key.strip() != "" else os.environ.get("GEMINI_API_KEY")
return genai.Client(api_key=key)
def upload_file(self, client, file_path):
"""Upload a file to Gemini"""
return client.files.upload(file=file_path)
def create_content(self, file_uri, file_mime_type, prompt_text):
"""Create content for the Gemini API request"""
return [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=file_uri,
mime_type=file_mime_type,
),
types.Part.from_text(text=prompt_text),
],
),
]
def create_config(self):
"""Create configuration for the Gemini API request"""
return types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=["image", "text"],
response_mime_type="text/plain",
)
def process_response(self, response_stream, temp_path):
"""Process the response stream from Gemini"""
text_response = ""
image_path = None
for chunk in response_stream:
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
candidate = chunk.candidates[0].content.parts[0]
if candidate.inline_data:
self.save_file(temp_path, candidate.inline_data.data)
print(f"Image saved to: {temp_path}")
image_path = temp_path
break
else:
text_response += chunk.text + "\n"
return image_path, text_response
def generate_image(self, prompt_text, file_path, api_key):
"""Generate an image based on prompt and input image"""
client = self.get_client(api_key)
# Upload the file
uploaded_file = self.upload_file(client, file_path)
# Create content and config
contents = self.create_content(uploaded_file.uri, uploaded_file.mime_type, prompt_text)
config = self.create_config()
# Process the response
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
response_stream = client.models.generate_content_stream(
model=self.model_name,
contents=contents,
config=config,
)
image_path, text_response = self.process_response(response_stream, temp_path)
# Clean up
del uploaded_file
return image_path, text_response
def process_image_and_prompt(self, input_image, prompt, api_key):
"""Process the input image and prompt"""
try:
# Save the input image to a temporary file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
image_path = tmp.name
input_image.save(image_path)
# Generate the image
result_path, text_response = self.generate_image(prompt, image_path, api_key)
if result_path:
# Load and convert the image if needed
result_img = Image.open(result_path)
if result_img.mode == "RGBA":
result_img = result_img.convert("RGB")
return [result_img], ""
else:
# Return no image and the text response
return None, text_response
except Exception as e:
raise gr.Error(f"Error: {e}", duration=5)
def create_interface():
"""Create the Gradio interface"""
image_editor = ImageEditor()
with gr.Blocks(css="style.css") as app:
# Header
gr.HTML(
"""
<div class="header-container">
<div>
<img src="https://www.gstatic.com/lamda/images/gemini_favicon_f069958c85030456e93de685481c559f160ea06b.png" alt="Gemini logo">
</div>
<div>
<h1>My Image Editing App</h1>
<p>Powered by Gradio⚡️ and Gemini |
<a href="https://aistudio.google.com/apikey">Get an API Key</a></p>
</div>
</div>
"""
)
# API Configuration
with gr.Accordion("⚠️ API Configuration ⚠️", open=False):
gr.Markdown("""
- **Note:** You need to provide a Gemini API key for image generation
- Sometimes the model returns text instead of an image - try adjusting your prompt
""")
# Usage Instructions
with gr.Accordion("📌 Usage Instructions", open=False):
gr.Markdown("""
### How to Use
- Upload an image (PNG format recommended)
- Enter a prompt describing the edit you want
- Click Generate to create your output
- If text is returned instead of an image, it will appear in the text output area
- ❌ **Do not use NSFW images!**
""")
# Main Content
with gr.Row():
# Input Column
with gr.Column():
image_input = gr.Image(
type="pil",
label="Upload Image",
image_mode="RGBA"
)
api_key_input = gr.Textbox(
lines=1,
placeholder="Enter Gemini API Key",
label="Gemini API Key",
type="password"
)
prompt_input = gr.Textbox(
lines=2,
placeholder="Describe the edit you want...",
label="Edit Prompt"
)
generate_btn = gr.Button("Generate Edit")
# Output Column
with gr.Column():
output_gallery = gr.Gallery(label="Edited Image")
output_text = gr.Textbox(
label="Text Output",
placeholder="Text response will appear here if no image is generated."
)
# Connect the interface
generate_btn.click(
fn=image_editor.process_image_and_prompt,
inputs=[image_input, prompt_input, api_key_input],
outputs=[output_gallery, output_text],
)
# Examples
gr.Markdown("## Example Prompts")
examples = [
["data/1.webp", 'change text to "MY TEXT"', ""],
["data/2.webp", "remove the spoon from the image", ""],
["data/3.webp", 'change text to "Custom Text"', ""],
["data/1.jpg", "add cartoon style to the face", ""],
]
gr.Examples(
examples=examples,
inputs=[image_input, prompt_input]
)
return app
# Create and launch the app
if __name__ == "__main__":
app = create_interface()
app.queue(max_size=50).launch() |