Spaces:
Sleeping
Sleeping
Ihor Bilyk
commited on
Commit
·
3598b74
1
Parent(s):
4915cfb
gray
Browse files
app.py
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
#import torch
|
3 |
from sahi.prediction import ObjectPrediction
|
4 |
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
from ultralyticsplus import YOLO
|
|
|
|
|
6 |
|
7 |
-
# Images
|
8 |
-
# torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg')
|
9 |
-
# torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg')
|
10 |
-
# torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
11 |
|
12 |
def yolov8_inference(
|
13 |
image: gr.inputs.Image = None,
|
@@ -30,7 +27,14 @@ def yolov8_inference(
|
|
30 |
model = YOLO(model_path)
|
31 |
model.conf = conf_threshold
|
32 |
model.iou = iou_threshold
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
object_prediction_list = []
|
35 |
for image_results in results:
|
36 |
if len(image_results)!=0:
|
@@ -53,7 +57,6 @@ def yolov8_inference(
|
|
53 |
)
|
54 |
object_prediction_list.append(object_prediction)
|
55 |
|
56 |
-
image = read_image(image)
|
57 |
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
58 |
return output_image['image']
|
59 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from sahi.prediction import ObjectPrediction
|
3 |
from sahi.utils.cv import visualize_object_predictions, read_image
|
4 |
from ultralyticsplus import YOLO
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def yolov8_inference(
|
10 |
image: gr.inputs.Image = None,
|
|
|
27 |
model = YOLO(model_path)
|
28 |
model.conf = conf_threshold
|
29 |
model.iou = iou_threshold
|
30 |
+
|
31 |
+
image = read_image(image)
|
32 |
+
|
33 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
34 |
+
thresh = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
|
35 |
+
thresh = Image.fromarray(thresh)
|
36 |
+
|
37 |
+
results = model.predict(thresh, imgsz=image_size)
|
38 |
object_prediction_list = []
|
39 |
for image_results in results:
|
40 |
if len(image_results)!=0:
|
|
|
57 |
)
|
58 |
object_prediction_list.append(object_prediction)
|
59 |
|
|
|
60 |
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
61 |
return output_image['image']
|
62 |
|