Spaces:
Running
Running
File size: 3,176 Bytes
f0d0de7 796f6f8 f0d0de7 a44887a f944087 f0d0de7 796f6f8 f0d0de7 796f6f8 f0d0de7 796f6f8 f0d0de7 fef2eb2 f0d0de7 fef2eb2 f0d0de7 fef2eb2 f0d0de7 796f6f8 f0d0de7 27d10ed 65358db 94f0f78 f0d0de7 83378e3 f0d0de7 f651cd7 f0d0de7 4d52726 cd5e6cd f0d0de7 21a8dd4 f0d0de7 a4d3cd0 f0d0de7 a4d3cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info
#from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# MODEL_NAME = "ihanif/pashto-asr-v3"
MODEL_NAME = "ihanif/whisper-small-tunning-v2" #"ihanif/pashto-asr-v5"
lang = "ps"
#load pre-trained model and tokenizer
#processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
#model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
#chunk_length_s=30,
device=device,
)
#pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
# if (microphone is not None) and (file_upload is not None):
# warn_output = (
# "WARNING: You've uploaded an audio file and used the microphone. "
# "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
# )
# elif (microphone is None) and (file_upload is None):
# return "ERROR: You have to either use the microphone or upload an audio file"
if (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
#transcription = wav2vec_model(audio)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
return html_embed_str, text
demo = gr.Blocks()
examples=[["example-1.wav", "example-1.wav"],["example-2.wav", "example-2.wav"]]
# examples=["example-1.wav"]
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="(Pashto ASR) د پښتو اتوماتیک وینا پیژندنه",
description=(
"</p> تاسو کولی شئ یو آډیو فایل اپلوډ کړئ یا په خپل وسیله مایکروفون وکاروئ. مهرباني وکړئ ډاډ ترلاسه کړئ چې تاسو اجازه ورکړې ده<p>"
),
#allow_flagging="never",
flagging_options=["Transcription is not in Pashto", "Transcription is wrong"],
examples=examples,
)
mf_transcribe.launch()
#with demo:
# gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
#demo.launch(enable_queue=False)
|