File size: 2,929 Bytes
65cef22
 
 
ba5b254
65cef22
 
 
ad45712
65cef22
ad45712
 
65cef22
 
ba5b254
 
e5c536d
 
 
40f834a
 
 
e5c536d
ba5b254
 
 
 
 
 
 
 
 
 
 
 
 
40f834a
65cef22
 
 
 
 
 
 
 
 
 
 
40f834a
 
65cef22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5b254
 
65cef22
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c536d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import PyPDF2
import gradio as gr
import json
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

# Função para extrair texto do PDF
def extract_text_from_pdf(pdf_file):
    reader = PyPDF2.PdfReader(pdf_file)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

# Função para gerar perguntas usando um modelo da Hugging Face
def generate_questions(text):
    tokenizer = AutoTokenizer.from_pretrained("valhalla/t5-base-qg-hl")
    model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-base-qg-hl")
    
    inputs = tokenizer.encode("generate questions: " + text, return_tensors="pt", max_length=512, truncation=True)
    outputs = model.generate(inputs, max_length=512, num_beams=4, early_stopping=True)
    questions = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
    
    return questions

# Função para responder perguntas usando um pipeline de perguntas e respostas
def answer_questions(context, questions):
    qa_pipeline = pipeline("question-answering")
    qas = []
    for question in questions:
        answer = qa_pipeline(question=question, context=context)
        qas.append({
            "question": question,
            "answer": answer['answer'],
            "answer_start": answer['start']
        })
    return qas

# Função para converter os pares de QA no formato SQuAD
def convert_to_squad_format(qas, context):
    squad_data = []
    for i, qa in enumerate(qas):
        entry = {
            "title": "Generated Data",
            "context": context,
            "question": qa['question'],
            "id": str(i),
            "answers": {
                "answer_start": [qa['answer_start']],
                "text": [qa['answer']]
            }
        }
        squad_data.append(entry)
    return squad_data

# Função para salvar os dados no formato SQuAD
def save_to_json(data, file_name):
    if not file_name.endswith(".json"):
        file_name += ".json"
    with open(file_name, "w", encoding='utf-8') as f:
        json.dump(data, f, ensure_ascii=False, indent=4)
    return file_name

# Função principal para ser usada no Gradio
def process_pdf(pdf_file, file_name):
    context = extract_text_from_pdf(pdf_file)
    questions = generate_questions(context)
    qas = answer_questions(context, questions)
    squad_data = convert_to_squad_format(qas, context)
    file_path = save_to_json(squad_data, file_name)
    return file_path

# Interface Gradio
with gr.Blocks() as demo:
    with gr.Row():
        pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"])
        file_name = gr.Textbox(label="Output JSON File Name", value="squad_dataset")
    process_button = gr.Button("Process PDF")
    download_link = gr.File(label="Download JSON", interactive=False)

    process_button.click(fn=process_pdf, inputs=[pdf_file, file_name], outputs=download_link)

demo.launch()