Spaces:
Sleeping
Sleeping
Create store_embedding.py
Browse files- store_embedding.py +29 -0
store_embedding.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain.document_loaders import TextLoader, DirectoryLoader
|
| 3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain.vectorstores import FAISS
|
| 6 |
+
|
| 7 |
+
# Set your Hugging Face token
|
| 8 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 9 |
+
|
| 10 |
+
# Load documents
|
| 11 |
+
loader = DirectoryLoader('data2/text/range/0-5000', loader_cls=TextLoader)
|
| 12 |
+
documents = loader.load()
|
| 13 |
+
print('len of documents are', len(documents))
|
| 14 |
+
|
| 15 |
+
# Split documents into chunks
|
| 16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
|
| 17 |
+
all_splits = text_splitter.split_documents(documents)
|
| 18 |
+
print("Length of all_splits:", len(all_splits))
|
| 19 |
+
|
| 20 |
+
# Generate embeddings
|
| 21 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 22 |
+
model_kwargs = {"device": "cuda"}
|
| 23 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
| 24 |
+
|
| 25 |
+
# Store embeddings in the vector store
|
| 26 |
+
vectorstore = FAISS.from_documents(all_splits, embeddings)
|
| 27 |
+
vectorstore.save_local('faiss_index')
|
| 28 |
+
|
| 29 |
+
print("Embeddings stored successfully!")
|