Spaces:
Sleeping
Sleeping
Commit
·
106f99c
1
Parent(s):
a16b16a
Add SmolVLM API
Browse files- app.py +66 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from fastapi import FastAPI, HTTPException
|
| 4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
import base64
|
| 8 |
+
import io
|
| 9 |
+
|
| 10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
torch_dtype = torch.bfloat16 if DEVICE == "cuda" and torch.cuda.is_bf16_supported() else torch.float32
|
| 13 |
+
|
| 14 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
|
| 15 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 16 |
+
"HuggingFaceTB/SmolVLM-500M-Instruct",
|
| 17 |
+
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
|
| 18 |
+
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
| 19 |
+
).to(DEVICE)
|
| 20 |
+
|
| 21 |
+
app = FastAPI()
|
| 22 |
+
|
| 23 |
+
app.add_middleware(
|
| 24 |
+
CORSMiddleware,
|
| 25 |
+
allow_origins=["*"],
|
| 26 |
+
allow_credentials=True,
|
| 27 |
+
allow_methods=["*"],
|
| 28 |
+
allow_headers=["*"],
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
class PredictRequest(BaseModel):
|
| 32 |
+
instruction: str
|
| 33 |
+
imageBase64URL: str
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@app.post("/v1/chat/completions")
|
| 37 |
+
async def predict(request: PredictRequest):
|
| 38 |
+
try:
|
| 39 |
+
header, base64_string = request.imageBase64URL.split(',', 1)
|
| 40 |
+
image_bytes = base64.b64decode(base64_string)
|
| 41 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 42 |
+
|
| 43 |
+
messages = [
|
| 44 |
+
{
|
| 45 |
+
"role": "user",
|
| 46 |
+
"content": [
|
| 47 |
+
{"type": "image"},
|
| 48 |
+
{"type": "text", "text": request.instruction}
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
]
|
| 52 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 53 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(DEVICE)
|
| 54 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
| 55 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 56 |
+
response_text = generated_texts[0]
|
| 57 |
+
return {"response": response_text}
|
| 58 |
+
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(f"Error durante la predicción: {e}")
|
| 61 |
+
raise HTTPException(status_code=500, detail=f"Internal Server Error: {e}")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@app.get("/")
|
| 65 |
+
async def read_root():
|
| 66 |
+
return {"message": "SmolVLM-500M API is running!"}
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
Pillow
|
| 4 |
+
fastapi
|
| 5 |
+
uvicorn[standard]
|