|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.attention import AdaGroupNorm |
|
from models.attention_processor import SpatialNorm |
|
|
|
|
|
class Upsample1D(nn.Module): |
|
"""A 1D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
self.conv = None |
|
if use_conv_transpose: |
|
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) |
|
elif use_conv: |
|
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, inputs): |
|
assert inputs.shape[1] == self.channels |
|
if self.use_conv_transpose: |
|
return self.conv(inputs) |
|
|
|
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") |
|
|
|
if self.use_conv: |
|
outputs = self.conv(outputs) |
|
|
|
return outputs |
|
|
|
|
|
class Downsample1D(nn.Module): |
|
"""A 1D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) |
|
|
|
def forward(self, inputs): |
|
assert inputs.shape[1] == self.channels |
|
return self.conv(inputs) |
|
|
|
|
|
class Upsample2D(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
conv = None |
|
if use_conv_transpose: |
|
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) |
|
elif use_conv: |
|
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
|
|
if name == "conv": |
|
self.conv = conv |
|
else: |
|
self.Conv2d_0 = conv |
|
|
|
def forward(self, hidden_states, output_size=None): |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.use_conv_transpose: |
|
return self.conv(hidden_states) |
|
|
|
|
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
|
|
if output_size is None: |
|
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") |
|
else: |
|
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
|
|
if self.use_conv: |
|
if self.name == "conv": |
|
hidden_states = self.conv(hidden_states) |
|
else: |
|
hidden_states = self.Conv2d_0(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
"""A 2D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) |
|
|
|
|
|
if name == "conv": |
|
self.Conv2d_0 = conv |
|
self.conv = conv |
|
elif name == "Conv2d_0": |
|
self.conv = conv |
|
else: |
|
self.conv = conv |
|
|
|
def forward(self, hidden_states): |
|
assert hidden_states.shape[1] == self.channels |
|
if self.use_conv and self.padding == 0: |
|
pad = (0, 1, 0, 1) |
|
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class FirUpsample2D(nn.Module): |
|
"""A 2D FIR upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
fir_kernel (`tuple`, default `(1, 3, 3, 1)`): |
|
kernel for the FIR filter. |
|
""" |
|
|
|
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): |
|
super().__init__() |
|
out_channels = out_channels if out_channels else channels |
|
if use_conv: |
|
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.use_conv = use_conv |
|
self.fir_kernel = fir_kernel |
|
self.out_channels = out_channels |
|
|
|
def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1): |
|
"""Fused `upsample_2d()` followed by `Conv2d()`. |
|
|
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more |
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of |
|
arbitrary order. |
|
|
|
Args: |
|
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
weight: Weight tensor of the shape `[filterH, filterW, inChannels, |
|
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. |
|
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` |
|
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. |
|
factor: Integer upsampling factor (default: 2). |
|
gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same |
|
datatype as `hidden_states`. |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
|
|
|
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * (gain * (factor**2)) |
|
|
|
if self.use_conv: |
|
convH = weight.shape[2] |
|
convW = weight.shape[3] |
|
inC = weight.shape[1] |
|
|
|
pad_value = (kernel.shape[0] - factor) - (convW - 1) |
|
|
|
stride = (factor, factor) |
|
|
|
output_shape = ( |
|
(hidden_states.shape[2] - 1) * factor + convH, |
|
(hidden_states.shape[3] - 1) * factor + convW, |
|
) |
|
output_padding = ( |
|
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, |
|
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW, |
|
) |
|
assert output_padding[0] >= 0 and output_padding[1] >= 0 |
|
num_groups = hidden_states.shape[1] // inC |
|
|
|
|
|
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) |
|
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) |
|
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) |
|
|
|
inverse_conv = F.conv_transpose2d( |
|
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0 |
|
) |
|
|
|
output = upfirdn2d_native( |
|
inverse_conv, |
|
torch.tensor(kernel, device=inverse_conv.device), |
|
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1), |
|
) |
|
else: |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
torch.tensor(kernel, device=hidden_states.device), |
|
up=factor, |
|
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), |
|
) |
|
|
|
return output |
|
|
|
def forward(self, hidden_states): |
|
if self.use_conv: |
|
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) |
|
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) |
|
else: |
|
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) |
|
|
|
return height |
|
|
|
|
|
class FirDownsample2D(nn.Module): |
|
"""A 2D FIR downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
fir_kernel (`tuple`, default `(1, 3, 3, 1)`): |
|
kernel for the FIR filter. |
|
""" |
|
|
|
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): |
|
super().__init__() |
|
out_channels = out_channels if out_channels else channels |
|
if use_conv: |
|
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.fir_kernel = fir_kernel |
|
self.use_conv = use_conv |
|
self.out_channels = out_channels |
|
|
|
def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1): |
|
"""Fused `Conv2d()` followed by `downsample_2d()`. |
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more |
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of |
|
arbitrary order. |
|
|
|
Args: |
|
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
weight: |
|
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be |
|
performed by `inChannels = x.shape[0] // numGroups`. |
|
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * |
|
factor`, which corresponds to average pooling. |
|
factor: Integer downsampling factor (default: 2). |
|
gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and |
|
same datatype as `x`. |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * gain |
|
|
|
if self.use_conv: |
|
_, _, convH, convW = weight.shape |
|
pad_value = (kernel.shape[0] - factor) + (convW - 1) |
|
stride_value = [factor, factor] |
|
upfirdn_input = upfirdn2d_native( |
|
hidden_states, |
|
torch.tensor(kernel, device=hidden_states.device), |
|
pad=((pad_value + 1) // 2, pad_value // 2), |
|
) |
|
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) |
|
else: |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
torch.tensor(kernel, device=hidden_states.device), |
|
down=factor, |
|
pad=((pad_value + 1) // 2, pad_value // 2), |
|
) |
|
|
|
return output |
|
|
|
def forward(self, hidden_states): |
|
if self.use_conv: |
|
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) |
|
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) |
|
else: |
|
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class KDownsample2D(nn.Module): |
|
def __init__(self, pad_mode="reflect"): |
|
super().__init__() |
|
self.pad_mode = pad_mode |
|
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) |
|
self.pad = kernel_1d.shape[1] // 2 - 1 |
|
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) |
|
|
|
def forward(self, inputs): |
|
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode) |
|
weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]]) |
|
indices = torch.arange(inputs.shape[1], device=inputs.device) |
|
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) |
|
weight[indices, indices] = kernel |
|
return F.conv2d(inputs, weight, stride=2) |
|
|
|
|
|
class KUpsample2D(nn.Module): |
|
def __init__(self, pad_mode="reflect"): |
|
super().__init__() |
|
self.pad_mode = pad_mode |
|
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2 |
|
self.pad = kernel_1d.shape[1] // 2 - 1 |
|
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) |
|
|
|
def forward(self, inputs): |
|
inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode) |
|
weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]]) |
|
indices = torch.arange(inputs.shape[1], device=inputs.device) |
|
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) |
|
weight[indices, indices] = kernel |
|
return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1) |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
groups_out (`int`, *optional*, default to None): |
|
The number of groups to use for the second normalization layer. if set to None, same as `groups`. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. |
|
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. |
|
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or |
|
"ada_group" for a stronger conditioning with scale and shift. |
|
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see |
|
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. |
|
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. |
|
use_in_shortcut (`bool`, *optional*, default to `True`): |
|
If `True`, add a 1x1 nn.conv2d layer for skip-connection. |
|
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. |
|
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. |
|
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the |
|
`conv_shortcut` output. |
|
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. |
|
If None, same as `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout=0.0, |
|
temb_channels=512, |
|
groups=32, |
|
groups_out=None, |
|
pre_norm=True, |
|
eps=1e-6, |
|
non_linearity="swish", |
|
skip_time_act=False, |
|
time_embedding_norm="default", |
|
kernel=None, |
|
output_scale_factor=1.0, |
|
use_in_shortcut=None, |
|
up=False, |
|
down=False, |
|
conv_shortcut_bias: bool = True, |
|
conv_2d_out_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.up = up |
|
self.down = down |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
self.skip_time_act = skip_time_act |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
elif self.time_embedding_norm == "scale_shift": |
|
self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels) |
|
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
self.time_emb_proj = None |
|
else: |
|
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_2d_out_channels = conv_2d_out_channels or out_channels |
|
self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
|
|
self.upsample = self.downsample = None |
|
if self.up: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") |
|
else: |
|
self.upsample = Upsample2D(in_channels, use_conv=False) |
|
elif self.down: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) |
|
else: |
|
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") |
|
|
|
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias |
|
) |
|
|
|
|
|
def forward(self, input_tensor, temb, inject_states=None): |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
|
|
if hidden_states.shape[0] >= 64: |
|
input_tensor = input_tensor.contiguous() |
|
hidden_states = hidden_states.contiguous() |
|
input_tensor = self.upsample(input_tensor) |
|
hidden_states = self.upsample(hidden_states) |
|
elif self.downsample is not None: |
|
input_tensor = self.downsample(input_tensor) |
|
hidden_states = self.downsample(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if self.time_emb_proj is not None: |
|
if not self.skip_time_act: |
|
temb = self.nonlinearity(temb) |
|
temb = self.time_emb_proj(temb)[:, :, None, None] |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
|
|
if inject_states is not None: |
|
output_tensor = (input_tensor + inject_states) / self.output_scale_factor |
|
else: |
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor, hidden_states |
|
|
|
|
|
|
|
def rearrange_dims(tensor): |
|
if len(tensor.shape) == 2: |
|
return tensor[:, :, None] |
|
if len(tensor.shape) == 3: |
|
return tensor[:, :, None, :] |
|
elif len(tensor.shape) == 4: |
|
return tensor[:, :, 0, :] |
|
else: |
|
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") |
|
|
|
|
|
class Conv1dBlock(nn.Module): |
|
""" |
|
Conv1d --> GroupNorm --> Mish |
|
""" |
|
|
|
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8): |
|
super().__init__() |
|
|
|
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2) |
|
self.group_norm = nn.GroupNorm(n_groups, out_channels) |
|
self.mish = nn.Mish() |
|
|
|
def forward(self, inputs): |
|
intermediate_repr = self.conv1d(inputs) |
|
intermediate_repr = rearrange_dims(intermediate_repr) |
|
intermediate_repr = self.group_norm(intermediate_repr) |
|
intermediate_repr = rearrange_dims(intermediate_repr) |
|
output = self.mish(intermediate_repr) |
|
return output |
|
|
|
|
|
|
|
class ResidualTemporalBlock1D(nn.Module): |
|
def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5): |
|
super().__init__() |
|
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size) |
|
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size) |
|
|
|
self.time_emb_act = nn.Mish() |
|
self.time_emb = nn.Linear(embed_dim, out_channels) |
|
|
|
self.residual_conv = ( |
|
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() |
|
) |
|
|
|
def forward(self, inputs, t): |
|
""" |
|
Args: |
|
inputs : [ batch_size x inp_channels x horizon ] |
|
t : [ batch_size x embed_dim ] |
|
|
|
returns: |
|
out : [ batch_size x out_channels x horizon ] |
|
""" |
|
t = self.time_emb_act(t) |
|
t = self.time_emb(t) |
|
out = self.conv_in(inputs) + rearrange_dims(t) |
|
out = self.conv_out(out) |
|
return out + self.residual_conv(inputs) |
|
|
|
|
|
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1): |
|
r"""Upsample2D a batch of 2D images with the given filter. |
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given |
|
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified |
|
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is |
|
a: multiple of the upsampling factor. |
|
|
|
Args: |
|
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` |
|
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. |
|
factor: Integer upsampling factor (default: 2). |
|
gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
output: Tensor of the shape `[N, C, H * factor, W * factor]` |
|
""" |
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * (gain * (factor**2)) |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
kernel.to(device=hidden_states.device), |
|
up=factor, |
|
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), |
|
) |
|
return output |
|
|
|
|
|
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1): |
|
r"""Downsample2D a batch of 2D images with the given filter. |
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the |
|
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the |
|
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its |
|
shape is a multiple of the downsampling factor. |
|
|
|
Args: |
|
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` |
|
(separable). The default is `[1] * factor`, which corresponds to average pooling. |
|
factor: Integer downsampling factor (default: 2). |
|
gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
output: Tensor of the shape `[N, C, H // factor, W // factor]` |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * gain |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2) |
|
) |
|
return output |
|
|
|
|
|
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)): |
|
up_x = up_y = up |
|
down_x = down_y = down |
|
pad_x0 = pad_y0 = pad[0] |
|
pad_x1 = pad_y1 = pad[1] |
|
|
|
_, channel, in_h, in_w = tensor.shape |
|
tensor = tensor.reshape(-1, in_h, in_w, 1) |
|
|
|
_, in_h, in_w, minor = tensor.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = tensor.view(-1, in_h, 1, in_w, 1, minor) |
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) |
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor) |
|
|
|
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) |
|
out = out.to(tensor.device) |
|
out = out[ |
|
:, |
|
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), |
|
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), |
|
:, |
|
] |
|
|
|
out = out.permute(0, 3, 1, 2) |
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape( |
|
-1, |
|
minor, |
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, |
|
) |
|
out = out.permute(0, 2, 3, 1) |
|
out = out[:, ::down_y, ::down_x, :] |
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 |
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 |
|
|
|
return out.view(-1, channel, out_h, out_w) |
|
|
|
|
|
class TemporalConvLayer(nn.Module): |
|
""" |
|
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: |
|
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 |
|
""" |
|
|
|
def __init__(self, in_dim, out_dim=None, dropout=0.0): |
|
super().__init__() |
|
out_dim = out_dim or in_dim |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
|
|
|
|
self.conv1 = nn.Sequential( |
|
nn.GroupNorm(32, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)) |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.GroupNorm(32, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
self.conv3 = nn.Sequential( |
|
nn.GroupNorm(32, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
self.conv4 = nn.Sequential( |
|
nn.GroupNorm(32, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), |
|
) |
|
|
|
|
|
nn.init.zeros_(self.conv4[-1].weight) |
|
nn.init.zeros_(self.conv4[-1].bias) |
|
|
|
def forward(self, hidden_states, num_frames=1): |
|
hidden_states = ( |
|
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4) |
|
) |
|
|
|
identity = hidden_states |
|
hidden_states = self.conv1(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
hidden_states = self.conv3(hidden_states) |
|
hidden_states = self.conv4(hidden_states) |
|
|
|
hidden_states = identity + hidden_states |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape( |
|
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:] |
|
) |
|
return hidden_states |
|
|