|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.utils import deprecate, logging, maybe_allow_in_graph |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
@maybe_allow_in_graph |
|
class Attention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
cross_attention_norm_num_groups: int = 32, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
spatial_norm_dim: Optional[int] = None, |
|
out_bias: bool = True, |
|
scale_qk: bool = True, |
|
only_cross_attention: bool = False, |
|
eps: float = 1e-5, |
|
rescale_output_factor: float = 1.0, |
|
residual_connection: bool = False, |
|
_from_deprecated_attn_block=False, |
|
processor: Optional["AttnProcessor"] = None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.rescale_output_factor = rescale_output_factor |
|
self.residual_connection = residual_connection |
|
self.dropout = dropout |
|
|
|
|
|
|
|
self._from_deprecated_attn_block = _from_deprecated_attn_block |
|
|
|
self.scale_qk = scale_qk |
|
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 |
|
|
|
self.heads = heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
self.only_cross_attention = only_cross_attention |
|
|
|
if self.added_kv_proj_dim is None and self.only_cross_attention: |
|
raise ValueError( |
|
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." |
|
) |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
if spatial_norm_dim is not None: |
|
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) |
|
else: |
|
self.spatial_norm = None |
|
|
|
if cross_attention_norm is None: |
|
self.norm_cross = None |
|
elif cross_attention_norm == "layer_norm": |
|
self.norm_cross = nn.LayerNorm(cross_attention_dim) |
|
elif cross_attention_norm == "group_norm": |
|
if self.added_kv_proj_dim is not None: |
|
|
|
|
|
|
|
|
|
|
|
norm_cross_num_channels = added_kv_proj_dim |
|
else: |
|
norm_cross_num_channels = cross_attention_dim |
|
|
|
self.norm_cross = nn.GroupNorm( |
|
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True |
|
) |
|
else: |
|
raise ValueError( |
|
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" |
|
) |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
|
|
if not self.only_cross_attention: |
|
|
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
else: |
|
self.to_k = None |
|
self.to_v = None |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, inner_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, inner_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim, bias=out_bias)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
|
|
|
if processor is None: |
|
processor = ( |
|
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() |
|
) |
|
self.set_processor(processor) |
|
|
|
|
|
def reshape_batch_dim_to_heads_and_average(self, tensor): |
|
batch_size, seq_len, seq_len2 = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, |
|
head_size, seq_len, seq_len2) |
|
return tensor.mean(1) |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None |
|
): |
|
is_lora = hasattr(self, "processor") and isinstance( |
|
self.processor, |
|
(LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, LoRAAttnAddedKVProcessor), |
|
) |
|
is_custom_diffusion = hasattr(self, "processor") and isinstance( |
|
self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor) |
|
) |
|
is_added_kv_processor = hasattr(self, "processor") and isinstance( |
|
self.processor, |
|
( |
|
AttnAddedKVProcessor, |
|
AttnAddedKVProcessor2_0, |
|
SlicedAttnAddedKVProcessor, |
|
XFormersAttnAddedKVProcessor, |
|
LoRAAttnAddedKVProcessor, |
|
), |
|
) |
|
|
|
if use_memory_efficient_attention_xformers: |
|
if is_added_kv_processor and (is_lora or is_custom_diffusion): |
|
raise NotImplementedError( |
|
f"Memory efficient attention is currently not supported for LoRA or custom diffuson for attention processor type {self.processor}" |
|
) |
|
if not is_xformers_available(): |
|
raise ModuleNotFoundError( |
|
( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers" |
|
), |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" |
|
" only available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
|
|
if is_lora: |
|
|
|
|
|
processor = LoRAXFormersAttnProcessor( |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
rank=self.processor.rank, |
|
attention_op=attention_op, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
processor.to(self.processor.to_q_lora.up.weight.device) |
|
elif is_custom_diffusion: |
|
processor = CustomDiffusionXFormersAttnProcessor( |
|
train_kv=self.processor.train_kv, |
|
train_q_out=self.processor.train_q_out, |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
attention_op=attention_op, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
if hasattr(self.processor, "to_k_custom_diffusion"): |
|
processor.to(self.processor.to_k_custom_diffusion.weight.device) |
|
elif is_added_kv_processor: |
|
|
|
|
|
|
|
|
|
logger.info( |
|
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." |
|
) |
|
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) |
|
else: |
|
processor = XFormersAttnProcessor(attention_op=attention_op) |
|
else: |
|
if is_lora: |
|
attn_processor_class = ( |
|
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor |
|
) |
|
processor = attn_processor_class( |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
rank=self.processor.rank, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
processor.to(self.processor.to_q_lora.up.weight.device) |
|
elif is_custom_diffusion: |
|
processor = CustomDiffusionAttnProcessor( |
|
train_kv=self.processor.train_kv, |
|
train_q_out=self.processor.train_q_out, |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
if hasattr(self.processor, "to_k_custom_diffusion"): |
|
processor.to(self.processor.to_k_custom_diffusion.weight.device) |
|
else: |
|
|
|
|
|
|
|
|
|
processor = ( |
|
AttnProcessor2_0() |
|
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk |
|
else AttnProcessor() |
|
) |
|
|
|
self.set_processor(processor) |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
if slice_size is not None and self.added_kv_proj_dim is not None: |
|
processor = SlicedAttnAddedKVProcessor(slice_size) |
|
elif slice_size is not None: |
|
processor = SlicedAttnProcessor(slice_size) |
|
elif self.added_kv_proj_dim is not None: |
|
processor = AttnAddedKVProcessor() |
|
else: |
|
|
|
|
|
|
|
|
|
processor = ( |
|
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() |
|
) |
|
|
|
self.set_processor(processor) |
|
|
|
def set_processor(self, processor: "AttnProcessor"): |
|
|
|
|
|
if ( |
|
hasattr(self, "processor") |
|
and isinstance(self.processor, torch.nn.Module) |
|
and not isinstance(processor, torch.nn.Module) |
|
): |
|
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") |
|
self._modules.pop("processor") |
|
|
|
self.processor = processor |
|
|
|
|
|
def forward(self, hidden_states, real_attn_probs=None, attn_weights=None, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): |
|
|
|
|
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
real_attn_probs=real_attn_probs, |
|
attn_weights=attn_weights, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def batch_to_head_dim(self, tensor): |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def head_to_batch_dim(self, tensor, out_dim=3): |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3) |
|
|
|
if out_dim == 3: |
|
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) |
|
|
|
return tensor |
|
|
|
|
|
def get_attention_scores(self, query, key, attention_mask=None, attn_weights=False): |
|
dtype = query.dtype |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
del baddbmm_input |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
|
|
if attn_weights is not None: |
|
assert key.shape[1] == 77 |
|
attention_scores_stable = attention_scores - attention_scores.max(-1, True)[0] |
|
attention_score_exp = attention_scores_stable.float().exp() |
|
|
|
font_size_abs, font_size_sign = attn_weights['font_size'].abs(), attn_weights['font_size'].sign() |
|
attention_score_exp[:, :, attn_weights['word_pos']] = attention_score_exp[:, :, attn_weights['word_pos']].clone( |
|
)*font_size_abs |
|
attention_probs = attention_score_exp / attention_score_exp.sum(-1, True) |
|
attention_probs[:, :, attn_weights['word_pos']] *= font_size_sign |
|
|
|
if attention_probs.isnan().any(): |
|
import ipdb; ipdb.set_trace() |
|
else: |
|
attention_probs = attention_scores.softmax(dim=-1) |
|
|
|
del attention_scores |
|
|
|
attention_probs = attention_probs.to(dtype) |
|
|
|
return attention_probs |
|
|
|
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3): |
|
if batch_size is None: |
|
deprecate( |
|
"batch_size=None", |
|
"0.0.15", |
|
( |
|
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect" |
|
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to" |
|
" `prepare_attention_mask` when preparing the attention_mask." |
|
), |
|
) |
|
batch_size = 1 |
|
|
|
head_size = self.heads |
|
if attention_mask is None: |
|
return attention_mask |
|
|
|
current_length: int = attention_mask.shape[-1] |
|
if current_length != target_length: |
|
if attention_mask.device.type == "mps": |
|
|
|
|
|
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) |
|
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat([attention_mask, padding], dim=2) |
|
else: |
|
|
|
|
|
|
|
|
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
|
|
if out_dim == 3: |
|
if attention_mask.shape[0] < batch_size * head_size: |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) |
|
elif out_dim == 4: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) |
|
|
|
return attention_mask |
|
|
|
def norm_encoder_hidden_states(self, encoder_hidden_states): |
|
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" |
|
|
|
if isinstance(self.norm_cross, nn.LayerNorm): |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
elif isinstance(self.norm_cross, nn.GroupNorm): |
|
|
|
|
|
|
|
|
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
else: |
|
assert False |
|
|
|
return encoder_hidden_states |
|
|
|
|
|
class AttnProcessor: |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
real_attn_probs=None, |
|
attn_weights=None, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
if real_attn_probs is None: |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask, attn_weights=attn_weights) |
|
else: |
|
|
|
attention_probs = real_attn_probs |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
|
|
attention_probs_avg = attn.reshape_batch_dim_to_heads_and_average( |
|
attention_probs) |
|
return hidden_states, [attention_probs_avg, attention_probs] |
|
|
|
|
|
class LoRALinearLayer(nn.Module): |
|
def __init__(self, in_features, out_features, rank=4, network_alpha=None): |
|
super().__init__() |
|
|
|
if rank > min(in_features, out_features): |
|
raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}") |
|
|
|
self.down = nn.Linear(in_features, rank, bias=False) |
|
self.up = nn.Linear(rank, out_features, bias=False) |
|
|
|
|
|
self.network_alpha = network_alpha |
|
self.rank = rank |
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank) |
|
nn.init.zeros_(self.up.weight) |
|
|
|
def forward(self, hidden_states): |
|
orig_dtype = hidden_states.dtype |
|
dtype = self.down.weight.dtype |
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype)) |
|
up_hidden_states = self.up(down_hidden_states) |
|
|
|
if self.network_alpha is not None: |
|
up_hidden_states *= self.network_alpha / self.rank |
|
|
|
return up_hidden_states.to(orig_dtype) |
|
|
|
|
|
class LoRAAttnProcessor(nn.Module): |
|
r""" |
|
Processor for implementing the LoRA attention mechanism. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the `encoder_hidden_states`. |
|
rank (`int`, defaults to 4): |
|
The dimension of the LoRA update matrices. |
|
network_alpha (`int`, *optional*): |
|
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.rank = rank |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
|
|
def __call__( |
|
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) |
|
query = attn.head_to_batch_dim(query) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class CustomDiffusionAttnProcessor(nn.Module): |
|
r""" |
|
Processor for implementing attention for the Custom Diffusion method. |
|
|
|
Args: |
|
train_kv (`bool`, defaults to `True`): |
|
Whether to newly train the key and value matrices corresponding to the text features. |
|
train_q_out (`bool`, defaults to `True`): |
|
Whether to newly train query matrices corresponding to the latent image features. |
|
hidden_size (`int`, *optional*, defaults to `None`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels in the `encoder_hidden_states`. |
|
out_bias (`bool`, defaults to `True`): |
|
Whether to include the bias parameter in `train_q_out`. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability to use. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
train_kv=True, |
|
train_q_out=True, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
out_bias=True, |
|
dropout=0.0, |
|
): |
|
super().__init__() |
|
self.train_kv = train_kv |
|
self.train_q_out = train_q_out |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
|
|
if self.train_kv: |
|
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
if self.train_q_out: |
|
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) |
|
self.to_out_custom_diffusion = nn.ModuleList([]) |
|
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) |
|
self.to_out_custom_diffusion.append(nn.Dropout(dropout)) |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
if self.train_q_out: |
|
query = self.to_q_custom_diffusion(hidden_states) |
|
else: |
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
crossattn = False |
|
encoder_hidden_states = hidden_states |
|
else: |
|
crossattn = True |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
if self.train_kv: |
|
key = self.to_k_custom_diffusion(encoder_hidden_states) |
|
value = self.to_v_custom_diffusion(encoder_hidden_states) |
|
else: |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
if crossattn: |
|
detach = torch.ones_like(key) |
|
detach[:, :1, :] = detach[:, :1, :] * 0.0 |
|
key = detach * key + (1 - detach) * key.detach() |
|
value = detach * value + (1 - detach) * value.detach() |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
if self.train_q_out: |
|
|
|
hidden_states = self.to_out_custom_diffusion[0](hidden_states) |
|
|
|
hidden_states = self.to_out_custom_diffusion[1](hidden_states) |
|
else: |
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnAddedKVProcessor: |
|
r""" |
|
Processor for performing attention-related computations with extra learnable key and value matrices for the text |
|
encoder. |
|
""" |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
residual = hidden_states |
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
query = attn.head_to_batch_dim(query) |
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
if not attn.only_cross_attention: |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
key = encoder_hidden_states_key_proj |
|
value = encoder_hidden_states_value_proj |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnAddedKVProcessor2_0: |
|
r""" |
|
Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra |
|
learnable key and value matrices for the text encoder. |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError( |
|
"AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
) |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
residual = hidden_states |
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
query = attn.head_to_batch_dim(query, out_dim=4) |
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4) |
|
|
|
if not attn.only_cross_attention: |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
key = attn.head_to_batch_dim(key, out_dim=4) |
|
value = attn.head_to_batch_dim(value, out_dim=4) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
else: |
|
key = encoder_hidden_states_key_proj |
|
value = encoder_hidden_states_value_proj |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1]) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class LoRAAttnAddedKVProcessor(nn.Module): |
|
r""" |
|
Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text |
|
encoder. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels in the `encoder_hidden_states`. |
|
rank (`int`, defaults to 4): |
|
The dimension of the LoRA update matrices. |
|
|
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.rank = rank |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0): |
|
residual = hidden_states |
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) |
|
query = attn.head_to_batch_dim(query) |
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + scale * self.add_k_proj_lora( |
|
encoder_hidden_states |
|
) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + scale * self.add_v_proj_lora( |
|
encoder_hidden_states |
|
) |
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
if not attn.only_cross_attention: |
|
key = attn.to_k(hidden_states) + scale * self.to_k_lora(hidden_states) |
|
value = attn.to_v(hidden_states) + scale * self.to_v_lora(hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
key = encoder_hidden_states_key_proj |
|
value = encoder_hidden_states_value_proj |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class XFormersAttnAddedKVProcessor: |
|
r""" |
|
Processor for implementing memory efficient attention using xFormers. |
|
|
|
Args: |
|
attention_op (`Callable`, *optional*, defaults to `None`): |
|
The base |
|
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to |
|
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best |
|
operator. |
|
""" |
|
|
|
def __init__(self, attention_op: Optional[Callable] = None): |
|
self.attention_op = attention_op |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
residual = hidden_states |
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
query = attn.head_to_batch_dim(query) |
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
if not attn.only_cross_attention: |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
key = encoder_hidden_states_key_proj |
|
value = encoder_hidden_states_value_proj |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class XFormersAttnProcessor: |
|
r""" |
|
Processor for implementing memory efficient attention using xFormers. |
|
|
|
Args: |
|
attention_op (`Callable`, *optional*, defaults to `None`): |
|
The base |
|
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to |
|
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best |
|
operator. |
|
""" |
|
|
|
def __init__(self, attention_op: Optional[Callable] = None): |
|
self.attention_op = attention_op |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, key_tokens, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) |
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
_, query_tokens, _ = hidden_states.shape |
|
attention_mask = attention_mask.expand(-1, query_tokens, -1) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query).contiguous() |
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
inner_dim = hidden_states.shape[-1] |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class LoRAXFormersAttnProcessor(nn.Module): |
|
r""" |
|
Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the `encoder_hidden_states`. |
|
rank (`int`, defaults to 4): |
|
The dimension of the LoRA update matrices. |
|
attention_op (`Callable`, *optional*, defaults to `None`): |
|
The base |
|
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to |
|
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best |
|
operator. |
|
network_alpha (`int`, *optional*): |
|
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, hidden_size, cross_attention_dim, rank=4, attention_op: Optional[Callable] = None, network_alpha=None |
|
): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.rank = rank |
|
self.attention_op = attention_op |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
|
|
def __call__( |
|
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) |
|
query = attn.head_to_batch_dim(query).contiguous() |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale |
|
) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class LoRAAttnProcessor2_0(nn.Module): |
|
r""" |
|
Processor for implementing the LoRA attention mechanism using PyTorch 2.0's memory-efficient scaled dot-product |
|
attention. |
|
|
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the `encoder_hidden_states`. |
|
rank (`int`, defaults to 4): |
|
The dimension of the LoRA update matrices. |
|
network_alpha (`int`, *optional*): |
|
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.rank = rank |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0): |
|
residual = hidden_states |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
inner_dim = hidden_states.shape[-1] |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
head_dim = inner_dim // attn.heads |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class CustomDiffusionXFormersAttnProcessor(nn.Module): |
|
r""" |
|
Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method. |
|
|
|
Args: |
|
train_kv (`bool`, defaults to `True`): |
|
Whether to newly train the key and value matrices corresponding to the text features. |
|
train_q_out (`bool`, defaults to `True`): |
|
Whether to newly train query matrices corresponding to the latent image features. |
|
hidden_size (`int`, *optional*, defaults to `None`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels in the `encoder_hidden_states`. |
|
out_bias (`bool`, defaults to `True`): |
|
Whether to include the bias parameter in `train_q_out`. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability to use. |
|
attention_op (`Callable`, *optional*, defaults to `None`): |
|
The base |
|
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use |
|
as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
train_kv=True, |
|
train_q_out=False, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
out_bias=True, |
|
dropout=0.0, |
|
attention_op: Optional[Callable] = None, |
|
): |
|
super().__init__() |
|
self.train_kv = train_kv |
|
self.train_q_out = train_q_out |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.attention_op = attention_op |
|
|
|
|
|
if self.train_kv: |
|
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
if self.train_q_out: |
|
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) |
|
self.to_out_custom_diffusion = nn.ModuleList([]) |
|
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) |
|
self.to_out_custom_diffusion.append(nn.Dropout(dropout)) |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if self.train_q_out: |
|
query = self.to_q_custom_diffusion(hidden_states) |
|
else: |
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
crossattn = False |
|
encoder_hidden_states = hidden_states |
|
else: |
|
crossattn = True |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
if self.train_kv: |
|
key = self.to_k_custom_diffusion(encoder_hidden_states) |
|
value = self.to_v_custom_diffusion(encoder_hidden_states) |
|
else: |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
if crossattn: |
|
detach = torch.ones_like(key) |
|
detach[:, :1, :] = detach[:, :1, :] * 0.0 |
|
key = detach * key + (1 - detach) * key.detach() |
|
value = detach * value + (1 - detach) * value.detach() |
|
|
|
query = attn.head_to_batch_dim(query).contiguous() |
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
if self.train_q_out: |
|
|
|
hidden_states = self.to_out_custom_diffusion[0](hidden_states) |
|
|
|
hidden_states = self.to_out_custom_diffusion[1](hidden_states) |
|
else: |
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SlicedAttnProcessor: |
|
r""" |
|
Processor for implementing sliced attention. |
|
|
|
Args: |
|
slice_size (`int`, *optional*): |
|
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and |
|
`attention_head_dim` must be a multiple of the `slice_size`. |
|
""" |
|
|
|
def __init__(self, slice_size): |
|
self.slice_size = slice_size |
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
residual = hidden_states |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = attn.head_to_batch_dim(query) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
batch_size_attention, query_tokens, _ = query.shape |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype |
|
) |
|
|
|
for i in range(batch_size_attention // self.slice_size): |
|
start_idx = i * self.slice_size |
|
end_idx = (i + 1) * self.slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
|
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class SlicedAttnAddedKVProcessor: |
|
r""" |
|
Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. |
|
|
|
Args: |
|
slice_size (`int`, *optional*): |
|
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and |
|
`attention_head_dim` must be a multiple of the `slice_size`. |
|
""" |
|
|
|
def __init__(self, slice_size): |
|
self.slice_size = slice_size |
|
|
|
def __call__(self, attn: "Attention", hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = attn.head_to_batch_dim(query) |
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
if not attn.only_cross_attention: |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
key = encoder_hidden_states_key_proj |
|
value = encoder_hidden_states_value_proj |
|
|
|
batch_size_attention, query_tokens, _ = query.shape |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype |
|
) |
|
|
|
for i in range(batch_size_attention // self.slice_size): |
|
start_idx = i * self.slice_size |
|
end_idx = (i + 1) * self.slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
|
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
AttentionProcessor = Union[ |
|
AttnProcessor, |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
SlicedAttnProcessor, |
|
AttnAddedKVProcessor, |
|
SlicedAttnAddedKVProcessor, |
|
AttnAddedKVProcessor2_0, |
|
XFormersAttnAddedKVProcessor, |
|
LoRAAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
LoRAAttnAddedKVProcessor, |
|
CustomDiffusionAttnProcessor, |
|
CustomDiffusionXFormersAttnProcessor, |
|
] |
|
|
|
|
|
class SpatialNorm(nn.Module): |
|
""" |
|
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
f_channels, |
|
zq_channels, |
|
): |
|
super().__init__() |
|
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) |
|
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) |
|
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, f, zq): |
|
f_size = f.shape[-2:] |
|
zq = F.interpolate(zq, size=f_size, mode="nearest") |
|
norm_f = self.norm_layer(f) |
|
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) |
|
return new_f |
|
|