Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import openai | |
openai.api_base = os.environ.get("OPENAI_API_BASE") | |
openai.api_key = os.environ.get("OPENAI_API_KEY") | |
MODEL_TYPE = os.environ.get("MODEL_TYPE") | |
def make_prediction(history, max_tokens=None, temperature=None, top_p=None): | |
messages = [] | |
for idx, (user, bot) in enumerate(history): | |
messages.append({"role": "user", "content": user}) | |
if idx != len(history) - 1: | |
messages.append({"role": "assistant", "content": bot}) | |
# print(messages) | |
completion = openai.ChatCompletion.create(model=MODEL_TYPE, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True) | |
for chunk in completion: | |
content = chunk["choices"][0]["delta"].get("content", "") | |
if content: | |
yield content | |
def clear_chat(chat_history_state, chat_message): | |
chat_history_state = [] | |
chat_message = '' | |
return chat_history_state, chat_message | |
def user(message, history): | |
history = history or [] | |
# Append the user's message to the conversation history | |
history.append([message, ""]) | |
return "", history | |
def chat(history, max_tokens, temperature, top_p): | |
history = history or [] | |
prediction = make_prediction( | |
history, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
for delta_text in prediction: | |
history[-1][1] += delta_text | |
# stream the response | |
yield history, history, "" | |
start_message = "" | |
with gr.Blocks() as demo: | |
with gr.Tab("Chatbot"): | |
gr.Markdown("# ๐ OpenChat 3.5 Playground ๐ฌ ") | |
chatbot = gr.Chatbot().style(height=500) | |
with gr.Row(): | |
message = gr.Textbox( | |
label="What do you want to chat about?", | |
placeholder="Ask me anything.", | |
lines=3, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) | |
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) | |
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) | |
with gr.Row(): | |
with gr.Column(): | |
max_tokens = gr.Slider(32, 4096, label="Max Tokens", step=32, value=1024) | |
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.5) | |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=1.0) | |
chat_history_state = gr.State() | |
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
submit_click_event = submit.click( | |
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True | |
).then( | |
fn=chat, inputs=[chat_history_state, max_tokens, temperature, top_p], outputs=[chat_history_state, chatbot, message], queue=True | |
) | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event], queue=False) | |
demo.queue(max_size=128, concurrency_count=48).launch(debug=True, server_name="0.0.0.0", server_port=7860) | |