Upload 2 files
Browse files- app.py +78 -0
- out-shakespeare-char/ckpt.pt +3 -0
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
from contextlib import nullcontext
|
| 4 |
+
import torch
|
| 5 |
+
import tiktoken
|
| 6 |
+
from model import GPTConfig, GPT
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
def sample_from_trained_model(start="\n", init_from='resume', out_dir='out-shakespeare-char', num_samples=1,
|
| 10 |
+
max_new_tokens=500, temperature=0.8, top_k=200, seed=1337, device='cpu', compile=False):
|
| 11 |
+
# Set the dtype
|
| 12 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
|
| 13 |
+
|
| 14 |
+
# Setup seed and device
|
| 15 |
+
torch.manual_seed(seed)
|
| 16 |
+
torch.cuda.manual_seed(seed)
|
| 17 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 18 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 19 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu'
|
| 20 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 21 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 22 |
+
|
| 23 |
+
# Load model
|
| 24 |
+
if init_from == 'resume':
|
| 25 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
| 26 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 27 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
| 28 |
+
model = GPT(gptconf)
|
| 29 |
+
state_dict = checkpoint['model']
|
| 30 |
+
unwanted_prefix = '_orig_mod.'
|
| 31 |
+
for k, v in list(state_dict.items()):
|
| 32 |
+
if k.startswith(unwanted_prefix):
|
| 33 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
| 34 |
+
model.load_state_dict(state_dict)
|
| 35 |
+
elif init_from.startswith('gpt2'):
|
| 36 |
+
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
|
| 37 |
+
|
| 38 |
+
model.eval()
|
| 39 |
+
model.to(device)
|
| 40 |
+
if compile:
|
| 41 |
+
model = torch.compile(model)
|
| 42 |
+
|
| 43 |
+
# Load meta data if available
|
| 44 |
+
load_meta = False
|
| 45 |
+
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']:
|
| 46 |
+
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
| 47 |
+
load_meta = os.path.exists(meta_path)
|
| 48 |
+
if load_meta:
|
| 49 |
+
print(f"Loading meta from {meta_path}...")
|
| 50 |
+
with open(meta_path, 'rb') as f:
|
| 51 |
+
meta = pickle.load(f)
|
| 52 |
+
stoi, itos = meta['stoi'], meta['itos']
|
| 53 |
+
encode = lambda s: [stoi[c] for c in s]
|
| 54 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
| 55 |
+
else:
|
| 56 |
+
print("No meta.pkl found, assuming GPT-2 encodings...")
|
| 57 |
+
enc = tiktoken.get_encoding("gpt2")
|
| 58 |
+
encode = lambda s: enc.encode(s, allowed_special={""})
|
| 59 |
+
decode = lambda l: enc.decode(l)
|
| 60 |
+
|
| 61 |
+
# Encode the beginning of the prompt
|
| 62 |
+
if start.startswith('FILE:'):
|
| 63 |
+
with open(start[5:], 'r', encoding='utf-8') as f:
|
| 64 |
+
start = f.read()
|
| 65 |
+
start_ids = encode(start)
|
| 66 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
| 67 |
+
|
| 68 |
+
# Run generation
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
with ctx:
|
| 71 |
+
for k in range(num_samples):
|
| 72 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
| 73 |
+
return decode(y[0].tolist())
|
| 74 |
+
|
| 75 |
+
iface = gr.Interface(fn=sample_from_trained_model, inputs="text", outputs="textbox",
|
| 76 |
+
title="GPT Text Generator", description="Enter a prompt to generate text.")
|
| 77 |
+
|
| 78 |
+
iface.launch(share=True)
|
out-shakespeare-char/ckpt.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b46b1b2a1b037525c9c87dbc6b7f728851c729ecb4e43f81f3f56552147ada52
|
| 3 |
+
size 128986474
|