Spaces:
Configuration error
Configuration error
File size: 5,621 Bytes
24bde82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import torch
import subprocess
import json
import os
import dlib
import gdown
import pickle
import re
from models import Wav2Lip
from base64 import b64encode
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
from IPython.display import HTML, display
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
def get_video_details(filename):
cmd = [
"ffprobe",
"-v",
"error",
"-show_format",
"-show_streams",
"-of",
"json",
filename,
]
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
info = json.loads(result.stdout)
# Get video stream
video_stream = next(
stream for stream in info["streams"] if stream["codec_type"] == "video"
)
# Get resolution
width = int(video_stream["width"])
height = int(video_stream["height"])
resolution = width * height
# Get fps
fps = eval(video_stream["avg_frame_rate"])
# Get length
length = float(info["format"]["duration"])
return width, height, fps, length
def show_video(file_path):
"""Function to display video in Colab"""
mp4 = open(file_path, "rb").read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
width, _, _, _ = get_video_details(file_path)
display(
HTML(
"""
<video controls width=%d>
<source src="%s" type="video/mp4">
</video>
"""
% (min(width, 1280), data_url)
)
)
def format_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
def _load(checkpoint_path):
if device != "cpu":
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(
checkpoint_path, map_location=lambda storage, loc: storage
)
return checkpoint
def load_model(path):
# If results file exists, load it and return
working_directory = os.getcwd()
folder, filename_with_extension = os.path.split(path)
filename, file_type = os.path.splitext(filename_with_extension)
results_file = os.path.join(folder, filename + ".pk1")
if os.path.exists(results_file):
with open(results_file, "rb") as f:
return pickle.load(f)
model = Wav2Lip()
print("Loading {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace("module.", "")] = v
model.load_state_dict(new_s)
model = model.to(device)
# Save results to file
with open(results_file, "wb") as f:
pickle.dump(model.eval(), f)
# os.remove(path)
return model.eval()
def get_input_length(filename):
result = subprocess.run(
[
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
filename,
],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
return float(result.stdout)
def is_url(string):
url_regex = re.compile(r"^(https?|ftp)://[^\s/$.?#].[^\s]*$")
return bool(url_regex.match(string))
def load_predictor():
checkpoint = os.path.join(
"checkpoints", "shape_predictor_68_face_landmarks_GTX.dat"
)
predictor = dlib.shape_predictor(checkpoint)
mouth_detector = dlib.get_frontal_face_detector()
# Serialize the variables
with open(os.path.join("checkpoints", "predictor.pkl"), "wb") as f:
pickle.dump(predictor, f)
with open(os.path.join("checkpoints", "mouth_detector.pkl"), "wb") as f:
pickle.dump(mouth_detector, f)
# delete the .dat file as it is no longer needed
# os.remove(output)
def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
"""Load file form http url, will download models if necessary.
Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
Args:
url (str): URL to be downloaded.
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
Default: None.
progress (bool): Whether to show the download progress. Default: True.
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.
Returns:
str: The path to the downloaded file.
"""
if model_dir is None: # use the pytorch hub_dir
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, "checkpoints")
os.makedirs(model_dir, exist_ok=True)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
return cached_file
def g_colab():
try:
import google.colab
return True
except ImportError:
return False
|