Spaces:
Runtime error
Runtime error
Commit
·
ac117b5
1
Parent(s):
57bef8f
inital verion
Browse files- README.md +1 -1
- app.py +111 -0
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Biomed-multi-alignment Protein-Protein-Interaction
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Biomed-multi-alignment Protein-Protein-Interaction
|
| 3 |
+
emoji: 🐁
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
| 5 |
+
from mammal.model import Mammal
|
| 6 |
+
from mammal.keys import *
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
model_path="ibm/biomed.omics.bl.sm.ma-ted-400m"
|
| 11 |
+
# Load Model
|
| 12 |
+
model = Mammal.from_pretrained(model_path)
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# Load Tokenizer
|
| 16 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained(model_path)
|
| 17 |
+
|
| 18 |
+
#token for positive binding
|
| 19 |
+
positive_token_id=tokenizer_op.get_token_id("<1>")
|
| 20 |
+
|
| 21 |
+
# Default input proteins
|
| 22 |
+
protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
|
| 23 |
+
protein_calcineurin = "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def format_query(prot1,prot2):
|
| 27 |
+
# Formatting prompt to match pre-training syntax
|
| 28 |
+
return f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
|
| 29 |
+
|
| 30 |
+
def run_query(query):
|
| 31 |
+
# Create and load sample
|
| 32 |
+
sample_dict = dict()
|
| 33 |
+
sample_dict[ENCODER_INPUTS_STR] = query
|
| 34 |
+
|
| 35 |
+
# Tokenize
|
| 36 |
+
sample_dict=tokenizer_op(
|
| 37 |
+
sample_dict=sample_dict,
|
| 38 |
+
key_in=ENCODER_INPUTS_STR,
|
| 39 |
+
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
|
| 40 |
+
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
|
| 41 |
+
)
|
| 42 |
+
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(sample_dict[ENCODER_INPUTS_TOKENS])
|
| 43 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(sample_dict[ENCODER_INPUTS_ATTENTION_MASK])
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# Generate Prediction
|
| 47 |
+
batch_dict = model.generate(
|
| 48 |
+
[sample_dict],
|
| 49 |
+
output_scores=True,
|
| 50 |
+
return_dict_in_generate=True,
|
| 51 |
+
max_new_tokens=5,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Get output
|
| 56 |
+
generated_output = tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
| 57 |
+
score = batch_dict['model.out.scores'][0][1][positive_token_id].item
|
| 58 |
+
|
| 59 |
+
return generated_output,score
|
| 60 |
+
|
| 61 |
+
def create_and_run_query(prot1, prot2):
|
| 62 |
+
query = format_query(prot1, prot2)
|
| 63 |
+
res=query, *run_query(query=query)
|
| 64 |
+
return res
|
| 65 |
+
|
| 66 |
+
def create_application():
|
| 67 |
+
markup_text = f"""
|
| 68 |
+
# Mammal protein binding demonstration
|
| 69 |
+
### Using the model from
|
| 70 |
+
|
| 71 |
+
```{model_path} ```
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
with gr.Blocks() as demo:
|
| 75 |
+
gr.Markdown(markup_text)
|
| 76 |
+
with gr.Row():
|
| 77 |
+
prot1 = gr.Textbox(
|
| 78 |
+
label="Protein 1 sequence",
|
| 79 |
+
# info="standard",
|
| 80 |
+
interactive=True,
|
| 81 |
+
lines=1,
|
| 82 |
+
value=protein_calmodulin,
|
| 83 |
+
)
|
| 84 |
+
prot2 = gr.Textbox(
|
| 85 |
+
label="Protein 2 sequence",
|
| 86 |
+
# info="standard",
|
| 87 |
+
interactive=True,
|
| 88 |
+
lines=1,
|
| 89 |
+
value=protein_calcineurin,
|
| 90 |
+
)
|
| 91 |
+
with gr.Row():
|
| 92 |
+
run_mammal = gr.Button("Run Mammal query")
|
| 93 |
+
with gr.Row():
|
| 94 |
+
query_box = gr.Textbox(label="Mammal query",lines=5)
|
| 95 |
+
|
| 96 |
+
with gr.Row():
|
| 97 |
+
decoded = gr.Textbox(label="Mammal output")
|
| 98 |
+
run_mammal.click(
|
| 99 |
+
fn=create_and_run_query,
|
| 100 |
+
inputs=[prot1,prot2],
|
| 101 |
+
outputs=[query_box,decoded,gr.Number(label='binding score')]
|
| 102 |
+
)
|
| 103 |
+
return demo
|
| 104 |
+
|
| 105 |
+
def main():
|
| 106 |
+
demo = create_application()
|
| 107 |
+
demo.launch(show_error=True, share=True)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# for the mammal demo app
|
| 2 |
+
mammal @ git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|