Spaces:
Sleeping
Sleeping
| PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" | |
| # Deep learning | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.backends.cudnn as cudnn | |
| # Transformers | |
| from fast_transformers.attention import AttentionLayer | |
| from fast_transformers.events import EventDispatcher, QKVEvent | |
| from fast_transformers.transformers import TransformerEncoder, TransformerEncoderLayer | |
| from fast_transformers.builders.base import BaseBuilder | |
| from fast_transformers.builders.transformer_builders import BaseTransformerEncoderBuilder | |
| from fast_transformers.builders.attention_builders import AttentionBuilder | |
| from fast_transformers.feature_maps import GeneralizedRandomFeatures | |
| from fast_transformers.masking import LengthMask | |
| from transformers import BertTokenizer | |
| # Data | |
| import numpy as np | |
| # Standard library | |
| from functools import partial | |
| import regex as re | |
| import random | |
| class MolTranBertTokenizer(BertTokenizer): | |
| def __init__(self, vocab_file: str = '', | |
| do_lower_case=False, | |
| unk_token='<pad>', | |
| sep_token='<eos>', | |
| pad_token='<pad>', | |
| cls_token='<bos>', | |
| mask_token='<mask>', | |
| **kwargs): | |
| super().__init__(vocab_file, | |
| unk_token=unk_token, | |
| sep_token=sep_token, | |
| pad_token=pad_token, | |
| cls_token=cls_token, | |
| mask_token=mask_token, | |
| **kwargs) | |
| self.regex_tokenizer = re.compile(PATTERN) | |
| self.wordpiece_tokenizer = None | |
| self.basic_tokenizer = None | |
| def _tokenize(self, text): | |
| split_tokens = self.regex_tokenizer.findall(text) | |
| return split_tokens | |
| def convert_idx_to_tokens(self, idx_tensor): | |
| tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()] | |
| return tokens | |
| def convert_tokens_to_string(self, tokens): | |
| stopwords = ['<bos>', '<eos>'] | |
| clean_tokens = [word for word in tokens if word not in stopwords] | |
| out_string = ''.join(clean_tokens) | |
| return out_string | |
| ## Transformer layers | |
| class RotaryEmbedding(torch.nn.Module): | |
| def __init__(self, dim, base=10000): | |
| super().__init__() | |
| inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
| self.register_buffer('inv_freq', inv_freq) | |
| self.seq_len_cached = 0 | |
| self.cos_cached = None | |
| self.sin_cached = None | |
| def forward(self, x, seq_dim=1): | |
| seq_len = x.shape[seq_dim] | |
| if seq_len != self.seq_len_cached: | |
| self.seq_len_cached = seq_len | |
| t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) | |
| freqs = torch.einsum('i,j->ij', t, self.inv_freq) | |
| emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
| self.cos_cached = emb.cos()[None,:, None, :] | |
| self.sin_cached = emb.sin()[None,:, None, :] | |
| return self.cos_cached, self.sin_cached | |
| def rotate_half(x): | |
| x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] | |
| return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions | |
| def apply_rotary_pos_emb(q, k, cos, sin): | |
| return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) | |
| class RotateAttentionLayer(AttentionLayer): | |
| """Rotate attention layer inherits from fast_transformer attention layer. | |
| The only thing added is an Embedding encoding, for more information | |
| on the attention layer see the fast_transformers code | |
| """ | |
| def __init__(self, attention, d_model, n_heads, d_keys=None, | |
| d_values=None, event_dispatcher=""): | |
| super(RotateAttentionLayer, self).__init__(attention,d_model, n_heads, d_keys=d_keys, | |
| d_values=d_values, event_dispatcher=event_dispatcher) | |
| self.rotaryemb = RotaryEmbedding(d_keys) | |
| print('Using Rotation Embedding') | |
| def forward(self, queries, keys, values, attn_mask, query_lengths, | |
| key_lengths): | |
| """ | |
| Using the same frame work as the fast_Transformers attention layer | |
| but injecting rotary information to the queries and the keys | |
| after the keys and queries are projected. | |
| In the argument description we make use of the following sizes | |
| - N: the batch size | |
| - L: The maximum length of the queries | |
| - S: The maximum length of the keys (the actual length per sequence | |
| is given by the length mask) | |
| - D: The input feature dimensionality passed in the constructor as | |
| 'd_model' | |
| Arguments | |
| --------- | |
| queries: (N, L, D) The tensor containing the queries | |
| keys: (N, S, D) The tensor containing the keys | |
| values: (N, S, D) The tensor containing the values | |
| attn_mask: An implementation of BaseMask that encodes where each | |
| query can attend to | |
| query_lengths: An implementation of BaseMask that encodes how | |
| many queries each sequence in the batch consists of | |
| key_lengths: An implementation of BaseMask that encodes how | |
| many queries each sequence in the batch consists of | |
| Returns | |
| ------- | |
| The new value for each query as a tensor of shape (N, L, D). | |
| """ | |
| # Extract the dimensions into local variables | |
| N, L, _ = queries.shape | |
| _, S, _ = keys.shape | |
| H = self.n_heads | |
| # Project the queries/keys/values | |
| queries = self.query_projection(queries).view(N, L, H, -1) | |
| keys = self.key_projection(keys).view(N, S, H, -1) | |
| cos, sin = self.rotaryemb(queries) | |
| queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin) | |
| values = self.value_projection(values).view(N, S, H, -1) | |
| # Let the world know of the qkv | |
| self.event_dispatcher.dispatch(QKVEvent(self, queries, keys, values)) | |
| # Compute the attention | |
| new_values = self.inner_attention( | |
| queries, | |
| keys, | |
| values, | |
| attn_mask, | |
| query_lengths, | |
| key_lengths | |
| ).view(N, L, -1) | |
| # Project the output and return | |
| return self.out_projection(new_values) | |
| class RotateEncoderBuilder(BaseTransformerEncoderBuilder): | |
| """Build a batch transformer encoder with Relative Rotary embeddings | |
| for training or processing of sequences all elements at a time. | |
| Example usage: | |
| builder = RotateEncoderBuilder() | |
| builder.n_layers = 12 | |
| builder.n_heads = 8 | |
| builder.feed_forward_dimensions = 1024 | |
| builder.query_dimensions = 64 | |
| builder.value_dimensions = 64 | |
| builder.dropout = 0.1 | |
| builder.attention_dropout = 0.1 | |
| builder.attention_type = "linear" | |
| transformer = builder.get() | |
| """ | |
| def _get_attention_builder(self): | |
| """Return an instance of the appropriate attention builder.""" | |
| return AttentionBuilder() | |
| def _get_attention_layer_class(self): | |
| """Return the class for the layer that projects queries keys and | |
| values.""" | |
| return RotateAttentionLayer | |
| def _get_encoder_class(self): | |
| """Return the class for the transformer encoder.""" | |
| return TransformerEncoder | |
| def _get_encoder_layer_class(self): | |
| """Return the class for the transformer encoder layer.""" | |
| return TransformerEncoderLayer | |
| class AutoEncoderLayer(nn.Module): | |
| def __init__(self, feature_size, latent_size): | |
| super().__init__() | |
| self.encoder = self.Encoder(feature_size, latent_size) | |
| self.decoder = self.Decoder(feature_size, latent_size) | |
| class Encoder(nn.Module): | |
| def __init__(self, feature_size, latent_size): | |
| super().__init__() | |
| self.is_cuda_available = torch.cuda.is_available() | |
| self.fc1 = nn.Linear(feature_size, latent_size) | |
| self.ln_f = nn.LayerNorm(latent_size) | |
| self.lat = nn.Linear(latent_size, latent_size, bias=False) | |
| def forward(self, x): | |
| if self.is_cuda_available: | |
| self.fc1.cuda() | |
| self.ln_f.cuda() | |
| self.lat.cuda() | |
| x = x.cuda() | |
| x = F.gelu(self.fc1(x)) | |
| x = self.ln_f(x) | |
| x = self.lat(x) | |
| return x # -> (N, D) | |
| class Decoder(nn.Module): | |
| def __init__(self, feature_size, latent_size): | |
| super().__init__() | |
| self.is_cuda_available = torch.cuda.is_available() | |
| self.fc1 = nn.Linear(latent_size, latent_size) | |
| self.ln_f = nn.LayerNorm(latent_size) | |
| self.rec = nn.Linear(latent_size, feature_size, bias=False) | |
| def forward(self, x): | |
| if self.is_cuda_available: | |
| self.fc1.cuda() | |
| self.ln_f.cuda() | |
| self.rec.cuda() | |
| x = x.cuda() | |
| x = F.gelu(self.fc1(x)) | |
| x = self.ln_f(x) | |
| x = self.rec(x) | |
| return x # -> (N, L*D) | |
| class LangLayer(nn.Module): | |
| def __init__(self, n_embd, n_vocab): | |
| super().__init__() | |
| self.is_cuda_available = torch.cuda.is_available() | |
| self.embed = nn.Linear(n_embd, n_embd) | |
| self.ln_f = nn.LayerNorm(n_embd) | |
| self.head = nn.Linear(n_embd, n_vocab, bias=False) | |
| def forward(self, tensor): | |
| if self.is_cuda_available: | |
| self.embed.cuda() | |
| self.ln_f.cuda() | |
| self.head.cuda() | |
| tensor = tensor.cuda() | |
| tensor = self.embed(tensor) | |
| tensor = F.gelu(tensor) | |
| tensor = self.ln_f(tensor) | |
| tensor = self.head(tensor) | |
| return tensor | |
| class MoLEncoder(nn.Module): | |
| def __init__(self, config, n_vocab): | |
| super(MoLEncoder, self).__init__() | |
| # embeddings | |
| self.tok_emb = nn.Embedding(n_vocab, config.n_embd) | |
| self.drop = nn.Dropout(config.d_dropout) | |
| # transformer | |
| builder = RotateEncoderBuilder.from_kwargs( | |
| n_layers=config.n_layer, | |
| n_heads=config.n_head, | |
| query_dimensions=config.n_embd//config.n_head, | |
| value_dimensions=config.n_embd//config.n_head, | |
| feed_forward_dimensions=config.n_embd, | |
| attention_type='linear', | |
| # unless we do deterministic_eval here, we will have random outputs | |
| feature_map=partial(GeneralizedRandomFeatures, | |
| n_dims=config.num_feats, | |
| deterministic_eval=False), | |
| activation='gelu' | |
| ) | |
| self.blocks = builder.get() | |
| # classification | |
| self.lang_model = LangLayer(config.n_embd, n_vocab) | |
| def forward(self, idx, mask=None, inference=False): | |
| if not inference: | |
| x = self.tok_emb(idx) # each index maps to a (learnable) vector | |
| x = self.drop(x) | |
| #masking of the length of the inputs its handled in the Masked language part of the code | |
| #do not attempt to handle it in the forward of the transformer | |
| x = self.blocks(x) | |
| logits = self.lang_model(x) | |
| return logits | |
| else: | |
| x = self.tok_emb(idx) # each index maps to a (learnable) vector | |
| x = self.drop(x) | |
| #masking of the length of the inputs its handled in the Masked language part of the code | |
| #do not attempt to handle it in the forward of the transformer | |
| x = self.blocks(x, length_mask=LengthMask(mask.sum(-1), max_len=idx.shape[1])) | |
| # mean pooling | |
| token_embeddings = x | |
| input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) | |
| sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| true_set = sum_embeddings / sum_mask | |
| return true_set, token_embeddings | |
| class MoLDecoder(nn.Module): | |
| def __init__(self, n_vocab, max_len, n_embd, n_gpu=None): | |
| super(MoLDecoder, self).__init__() | |
| self.max_len = max_len | |
| self.n_embd = n_embd | |
| self.n_gpu = n_gpu | |
| self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd) | |
| self.lang_model = LangLayer(n_embd, n_vocab) | |
| def forward(self, token_embeddings): | |
| pred_set = self.autoencoder.encoder(token_embeddings) # (N, D) | |
| pred_cte = self.autoencoder.decoder(pred_set) # (N, L*D) | |
| pred_ids = self.lang_model(pred_cte.view(-1, self.max_len, self.n_embd)) | |
| return pred_set, pred_ids | |
| class Smi_ted(nn.Module): | |
| """materials.smi-ted-Light 289M Parameters""" | |
| def __init__(self, config, vocab): | |
| super(Smi_ted, self).__init__() | |
| self.config = config | |
| self.padding_idx = 2 | |
| self.is_cuda_available = torch.cuda.is_available() | |
| n_vocab = len(vocab.keys()) | |
| print(n_vocab, config.n_embd) | |
| self.encoder = MoLEncoder(config, n_vocab) | |
| self.decoder = MoLDecoder(n_vocab, config.max_len, config.n_embd) | |
| self._set_seed(config.seed) | |
| print('Vocab size:', n_vocab) | |
| print(f'[PRE-TRAINING MODE - {str(self)}]') | |
| def _init_weights(self, module): | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| module.weight.data.normal_(mean=0.0, std=0.02) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| def _set_seed(self, value): | |
| print('Random Seed:', value) | |
| random.seed(value) | |
| torch.manual_seed(value) | |
| torch.cuda.manual_seed(value) | |
| torch.cuda.manual_seed_all(value) | |
| np.random.seed(value) | |
| cudnn.deterministic = True | |
| cudnn.benchmark = False | |
| def __str__(self): | |
| return 'smi-ted-Light' |