File size: 7,429 Bytes
c565e6b 44bb0fe c565e6b 4778482 c565e6b 44bb0fe c565e6b 44bb0fe c565e6b 44bb0fe c565e6b 44bb0fe c565e6b ce966e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import torch
import yaml
import numpy as np
import gradio as gr
from pathlib import Path
from einops import rearrange
from functools import partial
from huggingface_hub import hf_hub_download
from terratorch.cli_tools import LightningInferenceModel
# pull files from hub-
token = os.environ.get("HF_TOKEN", None)
config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-BurnScars",
filename="burn_scars_config.yaml", token=token)
checkpoint = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-BurnScars",
filename='Prithvi_EO_V2_300M_BurnScars.pt', token=token)
model_inference = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-BurnScars",
filename='inference.py', token=token)
os.system(f'cp {model_inference} .')
from inference import process_channel_group, _convert_np_uint8, load_example, run_model
def extract_rgb_imgs(input_img, pred_img, channels):
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
Args:
input_img: input torch.Tensor with shape (C, H, W).
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
pred_img: mask torch.Tensor with shape (C, T, H, W).
channels: list of indices representing RGB channels.
mean: list of mean values for each band.
std: list of std values for each band.
output_dir: directory where to save outputs.
meta_data: list of dicts with geotiff meta info.
"""
rgb_orig_list = []
rgb_mask_list = []
rgb_pred_list = []
for t in range(input_img.shape[1]):
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
new_img=rec_img[:, t, :, :],
channels=channels,
mean=mean,
std=std)
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
# extract images
rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0))
rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0))
rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0))
# Add white dummy image values for missing timestamps
dummy = np.ones((20, 20), dtype=np.uint8) * 255
num_dummies = 4 - len(rgb_orig_list)
if num_dummies:
rgb_orig_list.extend([dummy] * num_dummies)
rgb_mask_list.extend([dummy] * num_dummies)
rgb_pred_list.extend([dummy] * num_dummies)
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
return outputs
def predict_on_images(data_file: str | Path, config_path: str, checkpoint: str):
try:
data_file = data_file.name
print('Path extracted from example')
except:
print('Files submitted through UI')
# Get parameters --------
print('This is the printout', data_file)
with open(config_path, "r") as f:
config_dict = yaml.safe_load(f)
# Load model ---------------------------------------------------------------------------------
lightning_model = LightningInferenceModel.from_config(config_path, checkpoint)
img_size = 512 # Size of BurnScars
# Loading data ---------------------------------------------------------------------------------
input_data, temporal_coords, location_coords, meta_data = load_example(file_paths=[data_file])
if input_data.shape[1] != 6:
raise Exception(f'Input data has {input_data.shape[1]} channels. Expect six Prithvi channels.')
if input_data.mean() > 1:
input_data = input_data / 10000 # Convert to range 0-1
# Running model --------------------------------------------------------------------------------
lightning_model.model.eval()
channels = [config_dict['data']['init_args']['output_bands'].index(b) for b in ["RED", "GREEN", "BLUE"]] # BGR -> RGB
pred = run_model(input_data, lightning_model.model, lightning_model.datamodule, img_size)
if input_data.mean() < 1:
input_data = input_data * 10000 # Scale to 0-10000
# Extract RGB images for display
rgb_orig = process_channel_group(
orig_img=torch.Tensor(input_data[0, :, 0, ...]),
channels=channels,
)
out_rgb_orig = _convert_np_uint8(rgb_orig).transpose(1, 2, 0)
out_pred_rgb = _convert_np_uint8(pred).repeat(3, axis=0).transpose(1, 2, 0)
pred[pred == 0.] = np.nan
img_pred = rgb_orig * 0.6 + pred * 0.4
img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]
out_img_pred = _convert_np_uint8(img_pred).transpose(1, 2, 0)
outputs = [out_rgb_orig] + [out_pred_rgb] + [out_img_pred]
print("Done!")
return outputs
run_inference = partial(predict_on_images, config_path=config_path, checkpoint=checkpoint)
with gr.Blocks() as demo:
gr.Markdown(value='# Prithvi-EO-2.0 BurnScars Demo')
gr.Markdown(value='''
Prithvi-EO-2.0 is the second generation EO foundation model developed by the IBM and NASA team.
This demo showcases the fine-tuned Prithvi-EO-2.0-300M model to detect burn scars using HLS imagery from on the [HLS Burn Scars dataset](https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars). More details can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-BurnScars).\n
The user needs to provide a HLS image with the six Prithvi bands (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2).
We recommend submitting images of 500 to ~1000 pixels for faster processing time. Images bigger than 512x512 are processed using a sliding window approach which can lead to artefacts between patches.\n
Some example images are provided at the end of this page.
''')
with gr.Row():
with gr.Column():
inp_file = gr.File(elem_id='file')
# inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
btn = gr.Button("Submit")
with gr.Row():
gr.Markdown(value='## Input image')
gr.Markdown(value='## Prediction*')
gr.Markdown(value='## Overlay')
with gr.Row():
original = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
predicted = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
overlay = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
gr.Markdown(value='\* White = burned; Black = not burned')
btn.click(fn=run_inference,
inputs=inp_file,
outputs=[original] + [predicted] + [overlay])
with gr.Row():
gr.Examples(examples=[
os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SEH.2018190.v1.4_merged.tif"),
os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SFH.2018185.v1.4_merged.tif"),
os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SGF.2020217.v1.4_merged.tif")],
inputs=inp_file,
outputs=[original] + [predicted] + [overlay],
fn=run_inference,
cache_examples=True
)
demo.launch(share=True, ssr_mode=False)
|