File size: 12,205 Bytes
a099612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""Template Demo for IBM Granite Hugging Face spaces."""
import os
import time
from pathlib import Path
import re

import gradio as gr
import spaces
import torch
from gradio_pdf import PDF

from sandbox.light_rag.light_rag import LightRAG
from themes.research_monochrome import theme

dir_ = Path(__file__).parent.parent

TITLE = "Multimodal RAG with Granite Vision 3.2"

DESCRIPTION = """
<p>This experimental demo highlights granite-vision-3.2-2b capabilities within a multimodal retrieval-augmented generation (RAG) pipeline, demonstrating Granite's document understanding in real-world applications. Explore the sample document excerpts and try the sample prompts or enter your own. Keep in mind that AI can occasionally make mistakes.
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/docs/models/vision/">View Documentation <i class="fa fa-external-link"></i></a>
</span>
</p>
"""

device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")

BASE_PATH = dir_ / "data" / "final_v2_mar04"
PDFS_PATH = BASE_PATH / "pdfs"
MILVUS_PATH = BASE_PATH / "milvus"
IMAGES_PATH = BASE_PATH / "images"
PREVIEWS_PATH = BASE_PATH / "preview"

sample_data = [
    {
        "preview_image": str(PREVIEWS_PATH / "IBM-financial-2010.png"),
        "prompts": """Where geographically was the greatest growth in revenue in 2007? 
Which year had the highest income in billion?
Did the net income decrease in 2007 compared to 2006?
Net cash from operations on 2005?
What does it mean to be Globally Integrated Enterprise?
What are the segments for pretax income?""".split("\n"),
        "pdf": str(PDFS_PATH / "IBM_Annual_Report_2007_3-20.pdf"),
        "index": "ibm_report_2007_short_text_milvus_lite_2048_128_slate_278m_cosine",
        "db": str(MILVUS_PATH / "milvus.db"),
        "name": "IBM annual report 2007",
        "origin": "https://www.ibm.com/investor/att/pdf/IBM_Annual_Report_2007.pdf",
        "image_paths": {"prefix": str(IMAGES_PATH / "ibm_report_2007") + "/", "use_last": 2},
    },
    {
        "preview_image": str(PREVIEWS_PATH / "Wilhlborg-financial.png"),
        "prompts": """Where does Wihlborgs mainly operate?
Which year had the second lowest Equity/assets ratio?
Which year had the highest Project investments value?
What is the trend of equity/assets ratio?
What was the Growth percentage in income from property management in 2020?
Has the company’s interest coverage ratio increased or decreased in recent years?""".split("\n")
        ,
        "pdf": str(PDFS_PATH / "wihlborgs-2-13_16-18.pdf"),
        "index": "wihlborgs_short_text_milvus_lite_2048_128_slate_278m_cosine",
        "db": str(MILVUS_PATH / "milvus.db"),
        "name": "Wihlborgs Report 2020",
        "origin": "https://www.wihlborgs.se/globalassets/investor-relations/rapporter/2021/20210401-wihlborgs-annual-report-and-sustainability-report-2020-c24a6b51-c124-44fc-a4af-4237a33a29fb.pdf",
        "image_paths": {"prefix": str(IMAGES_PATH / "wihlborgs") + "/", "use_last": 2},
    },
]

config = {
    "embedding_model_id": "ibm-granite/granite-embedding-278m-multilingual",
    "generation_model_id": "ibm-granite/granite-3.1-8b-instruct",
    "milvus_collection_name": "granite_vision_tech_report_text_milvus_lite_512_128_slate_125m_cosine",
    "milvus_db_path": str(dir_ / "data" / MILVUS_PATH / "milvus_text_sample.db"),
}

if gr.NO_RELOAD:
    light_rag: LightRAG = LightRAG(config)
    if not os.environ.get("LAZY_LOADING") == "true":
        for sample in sample_data:
            light_rag.precache_milvus(sample["index"], sample["db"])


def lower_md_headers(md: str) -> str:
    return re.sub(r'(?:^|\n)##?\s(.+)', lambda m: '\n### ' + m.group(1), md)


# Parser for retrival results
def format_retrieval_result(i, d, cb, selected_sample):
    image_paths = sample_data[selected_sample]["image_paths"]

    if d.metadata["type"] == "text":
        context_string = f"---\n## Context {i + 1}\n#### (text extracted from document)\n{lower_md_headers(d.page_content)}\n"
        cb.append(gr.ChatMessage(role="assistant", content=context_string))
        return True
    elif d.metadata["type"] == "image_description":
        context_string = f"---\n## Context {i + 1}\n#### (image description generated by Granite Vision)"
        cb.append(gr.ChatMessage(role="assistant", content=context_string))

        # /dccstor/mm-rag/idanfr/granite_vision_demo/wdu_output/IBM_Annual_Report_2007/images/IBM_Annual_Report_2007_im_image_7_1.png
        image_path_parts = d.metadata["image_fullpath"].split("/")
        image_path = image_paths["prefix"] + ("/".join(image_path_parts[-image_paths["use_last"]:]))
        # print(f"image_path: {image_path}")
        cb.append(gr.ChatMessage(role="assistant", content=gr.Image(image_path)))

        cb.append(gr.ChatMessage(role="assistant", content=f"\n{lower_md_headers(d.metadata['image_description'])}\n"))


chatbot = gr.Chatbot(
    examples=[{"text": x} for x in sample_data[0]["prompts"]],
    type="messages",
    label=f"Q&A about {sample_data[0]['name']}",
    height=685,
    group_consecutive_messages=True,
    autoscroll=False,
    elem_classes=["chatbot_view"],
)


@spaces.GPU()
def generate_with_llm(query, context):
    if os.environ.get("NO_LLM"):
        time.sleep(2)
        return "Now answer, just a string", query
    return light_rag.generate(query=query, context=context)


# TODO: maybe add GPU back ?
def retrieval(collection, db, q):
    return light_rag.search(q, top_n=3, collection=collection, db=db)


# ################
# User Interface
# ################
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")

with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
    is_in_edit_mode = gr.State(True)  # in block to be reactive
    selected_doc = gr.State(0)
    current_question = gr.State("")

    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        # LEFT COLUMN: Sample selection, download, and PDF viewer
        with gr.Column():
            # Show preview images
            images_only = [sd["preview_image"] for sd in sample_data]
            document_gallery = gr.Gallery(
                images_only,
                label="Select a document",
                rows=1,
                columns=3,
                height="125px",
                # width="125px",
                allow_preview=False,
                selected_index=0,
                elem_classes=["preview_im_element"],
            )
            with gr.Group():
                pdf_display = PDF(
                    sample_data[0]["pdf"],
                    label=f"Preview for {sample_data[0]['name']}",
                    height=460,
                    interactive=False,
                    elem_classes=["pdf_viewer"],
                )
                dl_btn = gr.DownloadButton(
                    label=f"Download PDF ({sample_data[0]['name']})", value=sample_data[0]["pdf"], visible=True
                )


            def sample_image_selected(d: gr.SelectData):
                dx = sample_data[d.index]
                # print(f"DX:{dx}")
                return (
                    gr.update(examples=[{"text": x} for x in dx["prompts"]], label=f"Q&A about {dx['name']}"),
                    gr.update(value=dx["pdf"], label=f"Preview for {dx['name']}"),
                    gr.DownloadButton(value=dx["pdf"], label=f"Download PDF ({dx['name']})"),
                    d.index
                )


            document_gallery.select(lambda: [], outputs=[chatbot])
            document_gallery.select(sample_image_selected, inputs=[],
                                    outputs=[chatbot, pdf_display, dl_btn, selected_doc])

        # Right Column: Chat interface
        with gr.Column():
            # Render ChatBot
            chatbot.render()


            # Define behavior for example selection
            def update_user_chat_x(x: gr.SelectData):
                return [gr.ChatMessage(role="user", content=x.value["text"])]


            def question_from_selection(x: gr.SelectData):
                return x.value["text"]


            def _decorate_yield_result(cb, fb_status=False, gallery_status=False):
                return cb, gr.Button(interactive=fb_status), gr.Gallery(
                    elem_classes=["preview_im_element"] if gallery_status else ["preview_im_element", "inactive_div"])


            def send_generate(msg, cb, selected_sample):
                collection = sample_data[selected_sample]["index"]
                db = sample_data[selected_sample]["db"]
                # print(f"collection: {collection}, {db}")

                original_msg = gr.ChatMessage(role="user", content=msg)
                cb.append(original_msg)
                waiting_for_retrieval_msg = gr.ChatMessage(role="assistant",
                                                           content='## Answer\n*Querying Index*<span class="jumping-dots"><span class="dot-1">.</span>  <span class="dot-2">.</span>  <span class="dot-3">.</span></span>')
                cb.append(waiting_for_retrieval_msg)
                yield _decorate_yield_result(cb)

                q = msg.strip()
                results = retrieval(collection, db, q)

                # for d in results:
                #     print(f"****\n{d}")

                context_string = "## Context Documents for Answer\n\n"
                for i, d in enumerate(results):
                    if format_retrieval_result(i, d, cb, selected_sample):
                        yield _decorate_yield_result(cb)
                waiting_for_llm_msg = gr.ChatMessage(role="assistant",
                                                     content='## Answer\n *Waiting for LLM* <span class="jumping-dots"><span class="dot-1">.</span>  <span class="dot-2">.</span>  <span class="dot-3">.</span></span> ')
                cb[1] = waiting_for_llm_msg
                yield _decorate_yield_result(cb)

                answer, prompt = generate_with_llm(q, results)
                cb[1] = gr.ChatMessage(role="assistant", content=f"## Answer\n<b>{answer.strip()}</b>")
                # cb.pop()
                # cb.append(gr.ChatMessage(role="assistant", content=f"## Answer\n<b>{answer.strip()}</b>"))
                yield _decorate_yield_result(cb, fb_status=True, gallery_status=True)


            # Create User Chat Textbox and Reset Button
            tbb = gr.Textbox(submit_btn=True, show_label=False, placeholder="Type a message...")
            fb = gr.Button("Ask new question", visible=False)
            fb.click(lambda: [], outputs=[chatbot])

            chatbot.example_select(lambda: False, outputs=is_in_edit_mode)
            # chatbot.example_select(update_user_chat_x, outputs=[chatbot])
            chatbot.example_select(question_from_selection, inputs=[], outputs=[current_question]
                                   ).then(send_generate, inputs=[current_question, chatbot, selected_doc],
                                          outputs=[chatbot, fb, document_gallery])


            def textbox_switch(e_mode):  # Handle toggling between edit and non-edit mode
                if not e_mode:
                    return [gr.update(visible=False), gr.update(visible=True)]
                else:
                    return [gr.update(visible=True), gr.update(visible=False)]


            tbb.submit(lambda: False, outputs=[is_in_edit_mode])
            fb.click(lambda: True, outputs=[is_in_edit_mode])
            is_in_edit_mode.change(textbox_switch, inputs=[is_in_edit_mode], outputs=[tbb, fb])

            # submit user question
            # tbb.submit(lambda x: [gr.ChatMessage(role="user", content=x)], inputs=tbb, outputs=chatbot)
            tbb.submit(lambda x: x, inputs=[tbb], outputs=[current_question]
                       ).then(send_generate,
                              inputs=[current_question, chatbot, selected_doc],
                              outputs=[chatbot, fb, document_gallery])

if __name__ == "__main__":
    # demo.queue(max_size=20).launch()
    demo.launch()