File size: 2,406 Bytes
f7971e3
 
 
 
 
 
ef4425b
 
f7971e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import mediapipe as mp
import numpy as np
import cv2

title = "Hugging Face Me"
description = " Demo for overlaying the Hugging Face logo on your face using the Mediapipe Face Detection model."
article = "<p style='text-align: center'><a href='https://google.github.io/mediapipe/solutions/face_detection.html' target='_blank'>Mediapipe Face Detection</a> | <a href='https://github.com/google/mediapipe' target='_blank'>Github Repo</a></p>"

mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils

def draw_huggingfaces(image, results):
    
    height, width, _ = image.shape

    output_img = image.copy()
    if results.detections:
        for detection in results.detections:
            face_coordinates = np.array([[detection.location_data.relative_keypoints[i].x*width, 
                                          detection.location_data.relative_keypoints[i].y*height] 
                                          for i in [0,1,3]], dtype=np.float32)

            M = cv2.getAffineTransform(huggingface_landmarks, face_coordinates)
            transformed_huggingface = cv2.warpAffine(huggingface_image, M, (width, height))
            transformed_huggingface_mask = transformed_huggingface[:,:,3] != 0
            output_img[transformed_huggingface_mask] = transformed_huggingface[transformed_huggingface_mask,:3]

    return output_img


def huggingface_me(image):

    with mp_face_detection.FaceDetection(
        model_selection=0, 
        min_detection_confidence=0.5) as face_detection:

        # Convert the BGR image to RGB and process it with MediaPipe Face Mesh.
        results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    
    return draw_huggingfaces(image, results)

# Load hugging face logo and landmark coordinates
huggingface_image = cv2.imread("images/hugging-face.png",  cv2.IMREAD_UNCHANGED)
huggingface_image = cv2.cvtColor(huggingface_image, cv2.COLOR_BGRA2RGBA)
huggingface_landmarks = np.array([[747,697],[1289,697],[1022,1116]], dtype=np.float32)

webcam_image = gr.inputs.Image(label="Input Image", source="webcam")
output_image = gr.outputs.Image(label="Output Image")

gr.Interface(huggingface_me, 
            live=True, 
            inputs=webcam_image, 
            outputs=output_image,
            title=title,
            description=description,
            article=article, ).launch()