Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from markdown import markdown | |
| from annotated_text import annotation | |
| import logging | |
| from haystack.document_stores import InMemoryDocumentStore | |
| from haystack.nodes import TfidfRetriever | |
| from haystack.pipelines import ExtractiveQAPipeline | |
| from haystack.nodes import FARMReader | |
| import joblib | |
| def create_pipeline(): | |
| docs = joblib.load('docs.joblib') | |
| document_store = InMemoryDocumentStore() | |
| document_store.write_documents(docs) | |
| retriever = TfidfRetriever(document_store) | |
| reader = FARMReader(model_name_or_path="ixa-ehu/SciBERT-SQuAD-QuAC") | |
| pipeline = ExtractiveQAPipeline(reader, retriever) | |
| return pipeline | |
| pipeline = create_pipeline() | |
| def set_state_if_absent(key, value): | |
| if key not in st.session_state: | |
| st.session_state[key] = value | |
| set_state_if_absent("question", 'Applications of AI and deep learning') | |
| set_state_if_absent("results", None) | |
| def reset_results(*args): | |
| st.session_state.results = None | |
| st.markdown('''#Welcome to **SRM RP explorer**! | |
| This QA demo uses a [Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with | |
| an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains abstracts of 17k+ research papers associated with SRM university''') | |
| query = st.text_input('Enter a query to get started:', value=st.session_state.question, max_chars=100, on_change=reset_results) | |
| def ask_question(query): | |
| start = time.time() | |
| prediction = pipeline.run(query=query, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) | |
| st.write('Time taken: %s s' % round(time.time()-start, 2)) | |
| results = [] | |
| for answer in prediction["answers"]: | |
| answer = answer.to_dict() | |
| if answer["answer"]: | |
| results.append( | |
| { | |
| "title":answer["meta"]["name"], | |
| "link":answer["meta"]["link"], | |
| "context": "..." + answer["context"] + "...", | |
| "answer": answer["answer"], | |
| "score": round(answer["score"] * 100, 2), | |
| "offset_start_in_doc": answer["offsets_in_document"][0]["start"], | |
| } | |
| ) | |
| else: | |
| results.append( | |
| { | |
| "title":None, | |
| "link":None, | |
| "context": None, | |
| "answer": None, | |
| "relevance": round(answer["score"] * 100, 2), | |
| } | |
| ) | |
| return results | |
| if query: | |
| with st.spinner("π Performing semantic search on abstracts..."): | |
| try: | |
| msg = 'Asked ' + question | |
| logging.info(msg) | |
| st.session_state.results = ask_question(question) | |
| except Exception as e: | |
| logging.exception(e) | |
| if st.session_state.results: | |
| st.write('## Top Results') | |
| for count, result in enumerate(st.session_state.results): | |
| if result["answer"]: | |
| answer, context = result["answer"], result["context"] | |
| start_idx = context.find(answer) | |
| end_idx = start_idx + len(answer) | |
| st.write( | |
| markdown(context[:start_idx] + str(annotation(body=answer, label="RELEVANT", background="#964448", color='#ffffff')) + context[end_idx:]), | |
| unsafe_allow_html=True, | |
| ) | |
| st.markdown(f"**Title:** [{result['name']}]({result['link']})\n**Relevance:** {result['relevance']}") | |
| else: | |
| st.info( | |
| "π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!" | |
| ) | |