Spaces:
Running
Running
Upload 3 files
Browse files- download (1).jpeg +0 -0
- phishing (2).pkl +3 -0
- phising.py +28 -0
download (1).jpeg
ADDED
![]() |
phishing (2).pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33ce28564ef60466fd7514a1d34c4b3742c11769f4ecd9cd5e1d760abbdc6623
|
3 |
+
size 7659105
|
phising.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
app = Flask(__name__)
|
5 |
+
|
6 |
+
# Load the pre-trained phishing detection model from the .pkl file
|
7 |
+
with open('C:/Users/vtu24/Documents/phisning_dection/phisning/phisning/phishing (2).pkl', 'rb') as model_file:
|
8 |
+
phishing_model = pickle.load(model_file)
|
9 |
+
|
10 |
+
def is_phishing(url):
|
11 |
+
# Replace this with your actual prediction logic
|
12 |
+
# Example: You might need to preprocess the URL before making predictions
|
13 |
+
# prediction = phishing_model.predict(preprocess(url))
|
14 |
+
prediction = phishing_model.predict([url]) # Assuming the model expects a list of URLs
|
15 |
+
return prediction[0]
|
16 |
+
|
17 |
+
@app.route('/', methods=['GET', 'POST'])
|
18 |
+
def index():
|
19 |
+
result = None
|
20 |
+
|
21 |
+
if request.method == 'POST':
|
22 |
+
url = request.form['url']
|
23 |
+
result = is_phishing(url)
|
24 |
+
|
25 |
+
return render_template('index.html', result=result)
|
26 |
+
|
27 |
+
if __name__ == '__main__':
|
28 |
+
app.run(debug=True)
|