d / app.py
iamironman4279's picture
Create app.py
cf376e6 verified
raw
history blame contribute delete
819 Bytes
import streamlit as st
import pickle
# Load the pre-trained phishing detection model from the .pkl file
with open('phishing (2).pkl', 'rb') as model_file:
phishing_model = pickle.load(model_file)
def is_phishing(url):
# Replace this with your actual prediction logic
# Example: You might need to preprocess the URL before making predictions
# prediction = phishing_model.predict(preprocess(url))
prediction = phishing_model.predict([url]) # Assuming the model expects a list of URLs
return prediction[0]
def main():
st.title('Phishing Detection App')
url = st.text_input('Enter URL:')
if st.button('Check for Phishing'):
result = is_phishing(url)
st.write(f'The URL is {"phishing" if result else "not phishing"}')
if __name__ == '__main__':
main()