File size: 3,250 Bytes
a193f32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from flask import Flask, render_template, request, redirect, url_for

from keras.models import load_model

from keras.preprocessing import image

import numpy as np

import cv2

import io

import base64

from pymongo import MongoClient



app = Flask(__name__)



# Load the trained model

model = load_model('weights.hdf5')

model.compile(loss='binary_crossentropy',

              optimizer='rmsprop',

              metrics=['accuracy'])



# MongoDB connection

client = MongoClient('mongodb://localhost:27017/')

db = client['userfeedback']

feedback_collection = db['feedback']



@app.route('/', methods=['GET', 'POST'])

def index():

    if request.method == 'POST':

        return redirect(url_for('upload'))

    return render_template('index.html')



@app.route('/upload', methods=['GET', 'POST'])

def upload():

    if request.method == 'POST':

        # Get the uploaded image file

        img_file = request.files['file']

        if img_file:

            # Read the image file

            img_bytes = img_file.stream.read()

            # Convert bytes to numpy array

            img_np = np.frombuffer(img_bytes, np.uint8)

            # Decode numpy array to image

            img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)

            # Resize the image to match the input shape expected by the model

            img_resized = cv2.resize(img, (150, 150))

            # Expand the dimensions to match the input shape expected by the model

            x = np.expand_dims(img_resized, axis=0)

            # Normalize the image data

            x = x / 255.0

            # Predict probabilities for each class

            probabilities = model.predict(x)

            # Find the index of the class with the highest probability

            predicted_class_index = np.argmax(probabilities)

            # Determine the class label

            if predicted_class_index == 1:

                prediction = "Cancer"

                # Swap red and violet colors

                img[:,:,0], img[:,:,2] = img[:,:,2], img[:,:,0].copy()

            else:

                prediction = "Normal"

                img[:,:,0], img[:,:,2] = img[:,:,2], img[:,:,0].copy()

                

            # Convert the swapped image to base64 format for HTML rendering

            _, img_encoded = cv2.imencode('.png', img)

            swapped_img_base64 = base64.b64encode(img_encoded).decode()

            # Render the result template with the prediction and swapped image

            return render_template('result.html', prediction=prediction, swapped_img_base64=swapped_img_base64)

    return render_template('upload.html')



@app.route('/submit', methods=['POST'])

def submit_feedback():

    if request.method == 'POST':

        feedback = request.form.get('feedback')

        if feedback:

            feedback_collection.insert_one({'feedback': feedback})

            # Show alert for successful submission

            return '''

                <script>

                    alert('Thank you for submitting your feedback!');

                    window.location.href = '/';

                </script>

            '''

    return redirect(url_for('index'))



if __name__ == '__main__':

    app.run(debug=True)