import torch.nn as nn
import torch
from transformers import T5ForConditionalGeneration, ViTModel

import pytorch_lightning as pl

# Defining the pytorch model


class LaTr_for_pretraining(nn.Module):
    def __init__(self, config, classify=False):

        super(LaTr_for_pretraining, self).__init__()
        self.vocab_size = config['vocab_size']

        model = T5ForConditionalGeneration.from_pretrained(config['t5_model'])
        # Removing the Embedding layer
        dummy_encoder = list(nn.Sequential(
            *list(model.encoder.children())[1:]).children())
        # Removing the Embedding Layer
        dummy_decoder = list(nn.Sequential(
            *list(model.decoder.children())[1:]).children())

        # Using the T5 Encoder

        self.list_encoder = nn.Sequential(*list(dummy_encoder[0]))
        self.residue_encoder = nn.Sequential(*list(dummy_encoder[1:]))
        self.list_decoder = nn.Sequential(*list(dummy_decoder[0]))
        self.residue_decoder = nn.Sequential(*list(dummy_decoder[1:]))

        # We use the embeddings of T5 for encoding the tokenized words
        self.language_emb = nn.Embedding.from_pretrained(model.shared.weight)

        self.top_left_x = nn.Embedding(
            config['max_2d_position_embeddings'], config['hidden_state'])
        self.bottom_right_x = nn.Embedding(
            config['max_2d_position_embeddings'], config['hidden_state'])
        self.top_left_y = nn.Embedding(
            config['max_2d_position_embeddings'], config['hidden_state'])
        self.bottom_right_y = nn.Embedding(
            config['max_2d_position_embeddings'], config['hidden_state'])
        self.width_emb = nn.Embedding(
            config['max_2d_position_embeddings'], config['hidden_state'])
        self.height_emb = nn.Embedding(
            config['max_2d_position_embeddings'], config['hidden_state'])

        self.classify = classify
        self.classification_layer = nn.Linear(
            config['hidden_state'], config['classes'])

    def forward(self, tokens, coordinates, predict_proba=False, predict_class=False):

        batch_size = len(tokens)
        embeded_feature = self.language_emb(tokens)

        top_left_x_feat = self.top_left_x(coordinates[:, :, 0])
        top_left_y_feat = self.top_left_y(coordinates[:, :, 1])
        bottom_right_x_feat = self.bottom_right_x(coordinates[:, :, 2])
        bottom_right_y_feat = self.bottom_right_y(coordinates[:, :, 3])
        width_feat = self.width_emb(coordinates[:, :, 4])
        height_feat = self.height_emb(coordinates[:, :, 5])

        total_feat = embeded_feature + top_left_x_feat + top_left_y_feat + \
            bottom_right_x_feat + bottom_right_y_feat + width_feat + height_feat

        # Extracting the feature

        for layer in self.list_encoder:
            total_feat = layer(total_feat)[0]
        total_feat = self.residue_encoder(total_feat)

        for layer in self.list_decoder:
            total_feat = layer(total_feat)[0]
        total_feat = self.residue_decoder(total_feat)

        if self.classify:
            total_feat = self.classification_layer(total_feat)

        if predict_proba:
            return total_feat.softmax(axis=-1)

        if predict_class:
            return total_feat.argmax(axis=-1)

        return total_feat


class LaTr_for_finetuning(nn.Module):
    def __init__(self, config, address_to_pre_trained_weights=None):
        super(LaTr_for_finetuning, self).__init__()

        self.config = config
        self.vocab_size = config['vocab_size']

        self.pre_training_model = LaTr_for_pretraining(config)
        if address_to_pre_trained_weights is not None:
            self.pre_training_model.load_state_dict(
                torch.load(address_to_pre_trained_weights))
        self.vit = ViTModel.from_pretrained(
            "google/vit-base-patch16-224-in21k")

        # In the fine-tuning stage of vit, except the last layer, all the layers were freezed

        self.classification_head = nn.Linear(
            config['hidden_state'], config['classes'])

    def forward(self, lang_vect, spatial_vect, quest_vect, img_vect):

        # The below block of code calculates the language and spatial featuer
        embeded_feature = self.pre_training_model.language_emb(lang_vect)
        top_left_x_feat = self.pre_training_model.top_left_x(
            spatial_vect[:, :, 0])
        top_left_y_feat = self.pre_training_model.top_left_y(
            spatial_vect[:, :, 1])
        bottom_right_x_feat = self.pre_training_model.bottom_right_x(
            spatial_vect[:, :, 2])
        bottom_right_y_feat = self.pre_training_model.bottom_right_y(
            spatial_vect[:, :, 3])
        width_feat = self.pre_training_model.width_emb(spatial_vect[:, :, 4])
        height_feat = self.pre_training_model.height_emb(spatial_vect[:, :, 5])

        spatial_lang_feat = embeded_feature + top_left_x_feat + top_left_y_feat + \
            bottom_right_x_feat + bottom_right_y_feat + width_feat + height_feat

        # Extracting the image feature, using the Vision Transformer
        img_feat = self.vit(img_vect).last_hidden_state

        # Extracting the question vector
        quest_feat = self.pre_training_model.language_emb(quest_vect)

        # Concating the three features, and then passing it through the T5 Transformer
        final_feat = torch.cat(
            [img_feat, spatial_lang_feat, quest_feat], axis=-2)

        # Passing through the T5 Transformer
        for layer in self.pre_training_model.list_encoder:
            final_feat = layer(final_feat)[0]

        final_feat = self.pre_training_model.residue_encoder(final_feat)

        for layer in self.pre_training_model.list_decoder:
            final_feat = layer(final_feat)[0]
        final_feat = self.pre_training_model.residue_decoder(final_feat)

        answer_vector = self.classification_head(
            final_feat)[:, :self.config['seq_len'], :]

        return answer_vector


def polynomial(base_lr, iter, max_iter=1e5, power=1):
    return base_lr * ((1 - float(iter) / max_iter) ** power)


class LaTrForVQA(pl.LightningModule):
    def __init__(self, config, learning_rate=1e-4, max_steps=100000//2):
        super(LaTrForVQA, self).__init__()

        self.config = config
        self.save_hyperparameters()
        self.latr = LaTr_for_finetuning(config)
        self.training_losses = []
        self.validation_losses = []
        self.max_steps = max_steps

    def configure_optimizers(self):
        return torch.optim.AdamW(self.parameters(), lr=self.hparams['learning_rate'])

    def forward(self, batch_dict):
        boxes = batch_dict['boxes']
        img = batch_dict['img']
        question = batch_dict['question']
        words = batch_dict['tokenized_words']
        answer_vector = self.latr(lang_vect=words,
                                  spatial_vect=boxes,
                                  img_vect=img,
                                  quest_vect=question
                                  )
        return answer_vector

    def calculate_metrics(self, prediction, labels):

        # Calculate the accuracy score between the prediction and ground label for a batch, with considering the pad sequence
        batch_size = len(prediction)
        ac_score = 0

        for (pred, gt) in zip(prediction, labels):
            ac_score += calculate_acc_score(pred.detach().cpu(),
                                            gt.detach().cpu())
        ac_score = ac_score/batch_size
        return ac_score

    def training_step(self, batch, batch_idx):
        answer_vector = self.forward(batch)

        # https://discuss.huggingface.co/t/bertformaskedlm-s-loss-and-scores-how-the-loss-is-computed/607/2
        loss = nn.CrossEntropyLoss(ignore_index=0)(
            answer_vector.reshape(-1, self.config['classes']), batch['answer'].reshape(-1))
        _, preds = torch.max(answer_vector, dim=-1)

        # Calculating the accuracy score
        train_acc = self.calculate_metrics(preds, batch['answer'])
        train_acc = torch.tensor(train_acc)

        # Logging
        self.log('train_ce_loss', loss, prog_bar=True)
        self.log('train_acc', train_acc, prog_bar=True)
        self.training_losses.append(loss.item())

        return loss

    def validation_step(self, batch, batch_idx):
        logits = self.forward(batch)
        loss = nn.CrossEntropyLoss(ignore_index=0)(
            logits.reshape(-1, self.config['classes']), batch['answer'].reshape(-1))
        _, preds = torch.max(logits, dim=-1)

        # Validation Accuracy
        val_acc = self.calculate_metrics(preds.cpu(), batch['answer'].cpu())
        val_acc = torch.tensor(val_acc)

        # Logging
        self.log('val_ce_loss', loss, prog_bar=True)
        self.log('val_acc', val_acc, prog_bar=True)
        self.validation_losses.append(loss.item())
        return {'val_loss': loss, 'val_acc': val_acc}

    def optimizer_step(self, epoch_nb, batch_nb, optimizer, optimizer_i, opt_closure=None, on_tpu=False,
                       using_native_amp=False, using_lbfgs=False):

        # Warmup for 1000 steps
        if self.trainer.global_step < 1000:
            lr_scale = min(1., float(self.trainer.global_step + 1) / 1000.)
            for pg in optimizer.param_groups:
                pg['lr'] = lr_scale * self.hparams.learning_rate

        # Linear Decay
        else:
            for pg in optimizer.param_groups:
                pg['lr'] = polynomial(
                    self.hparams.learning_rate, self.trainer.global_step, max_iter=self.max_steps)

        optimizer.step(opt_closure)
        optimizer.zero_grad()

    def validation_epoch_end(self, outputs):
        val_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        val_acc = torch.stack([x['val_acc'] for x in outputs]).mean()

        self.log('val_loss_epoch_end', val_loss, on_epoch=True, sync_dist=True)
        self.log('val_acc_epoch_end', val_acc, on_epoch=True, sync_dist=True)