rag-pdfs / app.py
elshehawy's picture
code refactoring
7875ff8
import os
import gradio as gr
import openai
from langchain import hub
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pypdf import PdfReader, PdfWriter
from pathlib import Path
from typing import List
def build_rag_chain(pdf_paths: List[str], chunk_size: int, chunk_overlap: int, model_name: str):
loaders = [PyPDFLoader(path) for path in pdf_paths]
docs = []
for loader in loaders:
docs.extend(
loader.load()[0:] # skip first page
)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
# model_name = 'gpt-3.5-turbo-0125'
# model_name = 'gpt-4-1106-preview'
# model_name = 'gpt-4-0125-preview'
llm = ChatOpenAI(model_name=model_name, temperature=0)
def format_docs(docs):
return '\n\n'.join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return rag_chain
def predict(query: str, pdf_id: str =None, user_id: str = None, chunk_size: int =1000, chunk_overlap: int =200, model_name: str ='gpt-4-0125-preview'):
print(type(pdf_id))
# print(user_id)
if pdf_id:
# pdf_path = Path(pdf_file)
# pdf_reader = PdfReader(pdf_path)
# pdf_writer = PdfWriter()
# pdf_name = pdf_file.split('/')[-1]
# pdf_path = data_root + pdf_name
# if pdf_path not in load_pdf_paths(data_root):
# print('Saving file...')
# for page in pdf_reader.pages:
# pdf_writer.add_page(page)
# with open(pdf_path, 'wb') as f:
# pdf_writer.write(f)
# os.system("ls data/pdf")
# pdf_paths = load_pdf_paths(data_root)
rag_chain = build_rag_chain([pdf_id], chunk_size=chunk_size, chunk_overlap=chunk_overlap, model_name=model_name)
return rag_chain.invoke(query)
return "Please upload PDF file"
# examples = [
# "هل هناك غرامة للتخلف عن سداد ضريبة القيمة المضافة؟",
# "ما هي ضريبة القيمة المضافة؟",
# "ما الواجب على الخاضغين لضريبة القيمة المضافة؟",
# "من هو الشخص الخاضغ لضريبة القيمة المضافة؟",
# "متى يجب على الشخص التسجيل لضريبة القيمة المضافة؟",
# "أريد بيع منزل, هل يخضع ذلك لضريبة القيمة المضافة؟"
# ]
textbox = gr.Textbox(label="اكتب سؤالك هنا", placeholder="", lines=4)
upload_btn = gr.UploadButton(label='Upload a PDF file.')
iface = gr.Interface(fn=predict, inputs=[textbox, upload_btn], outputs="text")
iface.launch(share=True)