Spaces:
Paused
Paused
import os | |
import gradio as gr | |
import openai | |
from langchain import hub | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from pypdf import PdfReader, PdfWriter | |
from pathlib import Path | |
from typing import List | |
def build_rag_chain(pdf_paths: List[str], chunk_size: int, chunk_overlap: int, model_name: str): | |
loaders = [PyPDFLoader(path) for path in pdf_paths] | |
docs = [] | |
for loader in loaders: | |
docs.extend( | |
loader.load()[0:] # skip first page | |
) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap) | |
splits = text_splitter.split_documents(docs) | |
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()) | |
retriever = vectorstore.as_retriever() | |
prompt = hub.pull("rlm/rag-prompt") | |
# model_name = 'gpt-3.5-turbo-0125' | |
# model_name = 'gpt-4-1106-preview' | |
# model_name = 'gpt-4-0125-preview' | |
llm = ChatOpenAI(model_name=model_name, temperature=0) | |
def format_docs(docs): | |
return '\n\n'.join(doc.page_content for doc in docs) | |
rag_chain = ( | |
{"context": retriever | format_docs, "question": RunnablePassthrough()} | |
| prompt | |
| llm | |
| StrOutputParser() | |
) | |
return rag_chain | |
def predict(query: str, pdf_id: str =None, user_id: str = None, chunk_size: int =1000, chunk_overlap: int =200, model_name: str ='gpt-4-0125-preview'): | |
print(type(pdf_id)) | |
# print(user_id) | |
if pdf_id: | |
# pdf_path = Path(pdf_file) | |
# pdf_reader = PdfReader(pdf_path) | |
# pdf_writer = PdfWriter() | |
# pdf_name = pdf_file.split('/')[-1] | |
# pdf_path = data_root + pdf_name | |
# if pdf_path not in load_pdf_paths(data_root): | |
# print('Saving file...') | |
# for page in pdf_reader.pages: | |
# pdf_writer.add_page(page) | |
# with open(pdf_path, 'wb') as f: | |
# pdf_writer.write(f) | |
# os.system("ls data/pdf") | |
# pdf_paths = load_pdf_paths(data_root) | |
rag_chain = build_rag_chain([pdf_id], chunk_size=chunk_size, chunk_overlap=chunk_overlap, model_name=model_name) | |
return rag_chain.invoke(query) | |
return "Please upload PDF file" | |
# examples = [ | |
# "هل هناك غرامة للتخلف عن سداد ضريبة القيمة المضافة؟", | |
# "ما هي ضريبة القيمة المضافة؟", | |
# "ما الواجب على الخاضغين لضريبة القيمة المضافة؟", | |
# "من هو الشخص الخاضغ لضريبة القيمة المضافة؟", | |
# "متى يجب على الشخص التسجيل لضريبة القيمة المضافة؟", | |
# "أريد بيع منزل, هل يخضع ذلك لضريبة القيمة المضافة؟" | |
# ] | |
textbox = gr.Textbox(label="اكتب سؤالك هنا", placeholder="", lines=4) | |
upload_btn = gr.UploadButton(label='Upload a PDF file.') | |
iface = gr.Interface(fn=predict, inputs=[textbox, upload_btn], outputs="text") | |
iface.launch(share=True) | |