elshehawy commited on
Commit
625b3d8
Β·
1 Parent(s): 7bc9a58

set llm_model to "gpt-4-0125-preview"

Browse files
Files changed (1) hide show
  1. app.py +3 -45
app.py CHANGED
@@ -7,28 +7,18 @@ from transformers import pipeline
7
  # from dotenv import load_dotenv, find_dotenv
8
  import huggingface_hub
9
  import json
10
- # from simcse import SimCSE # use for gpt
11
  from evaluate_data import store_sample_data, get_metrics_trf
12
  from sentence_transformers import SentenceTransformer
13
  from tqdm import tqdm
14
- # store_sample_data()
15
 
16
-
17
-
18
- # with open('./data/sample_data.json', 'r') as f:
19
- # # sample_data = [
20
- # # {'id': "", 'text': "", 'orgs': ["", ""]}
21
- # # ]
22
- # sample_data = json.load(f)
23
-
24
- # _ = load_dotenv(find_dotenv()) # read local .env file
25
  hf_token= os.environ['HF_TOKEN']
26
  huggingface_hub.login(hf_token)
27
 
28
  pipe = pipeline("token-classification", model="elshehawy/finer-ord-transformers", aggregation_strategy="first")
29
 
30
 
31
- llm_model = 'gpt-3.5-turbo-0125'
 
32
  # openai.api_key = os.environ['OPENAI_API_KEY']
33
 
34
  client = OpenAI(
@@ -63,31 +53,6 @@ def find_orgs_gpt(sentence):
63
  return sent_orgs
64
 
65
 
66
-
67
- # def find_orgs_trf(sentence):
68
- # org_list = []
69
- # for ent in pipe(sentence):
70
- # if ent['entity_group'] == 'ORG':
71
- # # message += f'\n- {ent["word"]} \t- score: {ent["score"]}'
72
- # # message += f'\n- {ent["word"]}'# \t- score: {ent["score"]}'
73
- # org_list.append(ent['word'])
74
- # return list(set(org_list))
75
-
76
-
77
- # true_orgs = [sent['orgs'] for sent in sample_data]
78
-
79
- # predicted_orgs_gpt = [find_orgs_gpt(sent['text']) for sent in sample_data]
80
- # predicted_orgs_trf = [find_orgs_trf(sent['text']) for sent in sample_data]
81
-
82
- # all_metrics = {}
83
-
84
- # sim_model = SimCSE('sentence-transformers/all-MiniLM-L6-v2')
85
- # all_metrics['gpt'] = calc_metrics(true_orgs, predicted_orgs_gpt, sim_model)
86
- # print('Finiding all metrics trf')
87
- # all_metrics['trf'] = get_metrics_trf()
88
-
89
-
90
-
91
  example = """
92
  My latest exclusive for The Hill : Conservative frustration over Republican efforts to force a House vote on reauthorizing the Export - Import Bank boiled over Wednesday during a contentious GOP meeting.
93
 
@@ -111,18 +76,11 @@ def find_orgs(uploaded_file):
111
  all_metrics['trf'] = get_metrics_trf(uploaded_data)
112
 
113
 
114
- # with open('./data/sample_data.json', 'r') as f:
115
- # sample_data = json.load(f)
116
 
117
 
118
-
119
-
120
- # sim_model = SimCSE('sentence-transformers/all-MiniLM-L6-v2')
121
-
122
  print(all_metrics)
123
  return all_metrics
124
- # radio_btn = gr.Radio(choices=['GPT', 'iSemantics'], value='iSemantics', label='Available models', show_label=True)
125
- # textbox = gr.Textbox(label="Enter your text", placeholder=str(all_metrics), lines=8)
126
  upload_btn = gr.UploadButton(label='Upload a json file.', type='binary')
127
 
128
  iface = gr.Interface(fn=find_orgs, inputs=upload_btn, outputs="text")
 
7
  # from dotenv import load_dotenv, find_dotenv
8
  import huggingface_hub
9
  import json
 
10
  from evaluate_data import store_sample_data, get_metrics_trf
11
  from sentence_transformers import SentenceTransformer
12
  from tqdm import tqdm
 
13
 
 
 
 
 
 
 
 
 
 
14
  hf_token= os.environ['HF_TOKEN']
15
  huggingface_hub.login(hf_token)
16
 
17
  pipe = pipeline("token-classification", model="elshehawy/finer-ord-transformers", aggregation_strategy="first")
18
 
19
 
20
+ # llm_model = 'gpt-3.5-turbo-0125'
21
+ llm_model = 'gpt-4-0125-preview'
22
  # openai.api_key = os.environ['OPENAI_API_KEY']
23
 
24
  client = OpenAI(
 
53
  return sent_orgs
54
 
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  example = """
57
  My latest exclusive for The Hill : Conservative frustration over Republican efforts to force a House vote on reauthorizing the Export - Import Bank boiled over Wednesday during a contentious GOP meeting.
58
 
 
76
  all_metrics['trf'] = get_metrics_trf(uploaded_data)
77
 
78
 
 
 
79
 
80
 
 
 
 
 
81
  print(all_metrics)
82
  return all_metrics
83
+
 
84
  upload_btn = gr.UploadButton(label='Upload a json file.', type='binary')
85
 
86
  iface = gr.Interface(fn=find_orgs, inputs=upload_btn, outputs="text")