Spaces:
Sleeping
Sleeping
File size: 18,992 Bytes
83d5461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# -*- coding: utf-8 -*-
#
# @File: inference.py
# @Author: Haozhe Xie
# @Date: 2024-03-02 16:30:00
# @Last Modified by: Haozhe Xie
# @Last Modified at: 2024-10-13 15:17:20
# @Email: root@haozhexie.com
import cv2
import math
import numpy as np
import scipy.spatial.transform
import torch
from tqdm import tqdm
CLASSES = {
"NULL": 0,
"ROAD": 1,
"BLDG_FACADE": 2,
"GREEN_LANDS": 3,
"CONSTRUCTION": 4,
"COAST_ZONES": 5,
"ZONE": 6,
"BLDG_ROOF": 7,
}
SCALES = {
"ROAD": 2,
"BLDG_FACADE": 1,
"BLDG_ROOF": 1,
"GREEN_LANDS": 2,
"CONSTRUCTION": 1,
"COAST_ZONES": 4,
"ZONE": 2,
}
CONSTANTS = {
"CAM_K": [1528.1469407006614, 0, 480, 0, 1528.1469407006614, 270, 0, 0, 1],
"SENSOR_SIZE": [960, 540],
"BLDG_INST_RANGE": [100, 16384],
"PROJECTION_SIZE": 2048,
"POINT_SCALE_FACTOR": 0.5,
"SPECIAL_Z_SCALE_CLASSES": [
CLASSES["ROAD"],
CLASSES["COAST_ZONES"],
CLASSES["ZONE"],
],
}
def get_instance_seg_map(seg_map):
# Mapping constructions to buildings
seg_map[seg_map == CLASSES["CONSTRUCTION"]] = CLASSES["BLDG_FACADE"]
# Use connected components to get building instances
_, labels, _, _ = cv2.connectedComponentsWithStats(
(seg_map == CLASSES["BLDG_FACADE"]).astype(np.uint8), connectivity=4
)
# Remove non-building instance masks
labels[seg_map != CLASSES["BLDG_FACADE"]] = 0
# Building instance mask
building_mask = labels != 0
# Make building instance IDs are even numbers and start from 10
# Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1.
labels = (labels + CONSTANTS["BLDG_INST_RANGE"][0]) * 2
seg_map[seg_map == CLASSES["BLDG_FACADE"]] = 0
seg_map = seg_map * (1 - building_mask) + labels * building_mask
assert np.max(labels) < 2147483648
return seg_map.astype(np.int32)
def get_point_map(seg_map):
inverted_index = {v: k for k, v in CLASSES.items()}
pts_map = np.zeros(seg_map.shape, dtype=bool)
for c in np.unique(seg_map):
cls_name = inverted_index[c]
if cls_name == "NULL":
continue
mask = seg_map == c
pt_map = _get_point_map(seg_map.shape, SCALES[cls_name])
pt_map[~mask] = False
pts_map += pt_map
return pts_map
def _get_point_map(map_size, stride):
pts_map = np.zeros(map_size, dtype=bool)
ys = np.arange(0, map_size[0], stride)
xs = np.arange(0, map_size[1], stride)
coords = np.stack(np.meshgrid(ys, xs), axis=-1).reshape(-1, 2)
pts_map[coords[:, 0], coords[:, 1]] = True
return pts_map
def get_centers(ins_map, td_hf):
centers = {}
instances = np.unique(ins_map)
for i in tqdm(instances, desc="Calculating centers ..."):
if i >= CONSTANTS["BLDG_INST_RANGE"][0]:
ds_mask = ins_map == i
contours, _ = cv2.findContours(
ds_mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE,
)
contours = np.vstack(contours).reshape(-1, 2)
min_x, max_x = np.min(contours[:, 0]), np.max(contours[:, 0])
min_y, max_y = np.min(contours[:, 1]), np.max(contours[:, 1])
max_z = np.max(td_hf[ds_mask]) + 1
else:
min_x, max_x = 0, CONSTANTS["PROJECTION_SIZE"]
min_y, max_y = 0, CONSTANTS["PROJECTION_SIZE"]
max_z = np.max(td_hf)
centers[i] = np.array(
[
(min_x + max_x) / 2,
(min_y + max_y) / 2,
(max_x - min_x),
(max_y - min_y),
max_z,
],
dtype=np.float32,
)
return centers
def generate_city(
fgm, bgm, city_layout, cx, cy, radius, altitude, azimuth, style_lut=None
):
import gaussiancity.extensions.diff_gaussian_rasterization as dgr
device = torch.device("cuda")
gr = dgr.GaussianRasterizerWrapper(
np.array(CONSTANTS["CAM_K"], dtype=np.float32).reshape((3, 3)),
CONSTANTS["SENSOR_SIZE"],
flip_lr=True,
flip_ud=False,
device=device,
)
layout = _get_local_layout(
city_layout,
cx,
cy,
CONSTANTS["PROJECTION_SIZE"] // 2,
CONSTANTS["BLDG_INST_RANGE"],
device,
)
bev_pts = _get_bev_points(layout, SCALES, CLASSES)
bev_pt_classes = _instances_to_classes(
bev_pts[:, [3]], CONSTANTS["BLDG_INST_RANGE"], CLASSES
)
bev_pt_classes_onehot = _get_onehot_seg(bev_pt_classes, len(CLASSES))
bev_pt_scales = _get_point_scales(
bev_pt_classes,
SCALES,
CLASSES,
CONSTANTS["SPECIAL_Z_SCALE_CLASSES"],
)
bev_pts = torch.cat([bev_pts, bev_pt_scales, bev_pt_classes_onehot], dim=1)
# print(bev_pts.shape) # [N, XYZ + Inst + Scale3D + N_CLASSES]
if style_lut is None:
style_lut = _get_style_lut(
layout["CTR"],
{"BLDG": fgm, "REST": bgm},
{
"BLDG": CONSTANTS["BLDG_INST_RANGE"],
"REST": [0, CONSTANTS["BLDG_INST_RANGE"][0]],
},
device,
)
cam_look_at, cam_pose = _get_orbit_camera_pose(
radius, altitude, azimuth, CONSTANTS["PROJECTION_SIZE"] // 2, device
)
vp_idx = _get_visible_points(
bev_pts[:, :3],
bev_pt_scales,
CONSTANTS["CAM_K"],
CONSTANTS["SENSOR_SIZE"],
cam_pose[:3],
cam_look_at,
)
gs_attrs = _get_gs_attrs(
bev_pts[vp_idx],
layout["TD_HF"].float(),
layout["SEG"].float(),
style_lut,
layout["CTR"],
{"BLDG": fgm, "REST": bgm},
CONSTANTS["POINT_SCALE_FACTOR"],
CONSTANTS["BLDG_INST_RANGE"],
)
return _render(gs_attrs, gr, cam_pose)
def _get_local_layout(city_layout, cx, cy, half_proj_size, bldg_inst_range, device):
x_min, x_max = cx - half_proj_size, cx + half_proj_size
y_min, y_max = cy - half_proj_size, cy + half_proj_size
_layout = {
k: torch.from_numpy(v[None, None, y_min:y_max, x_min:x_max]).cuda(device)
for k, v in city_layout.items()
if k in ["TD_HF", "BU_HF", "SEG", "INS", "PTS"]
}
_layout["SEG"] = _get_onehot_seg(_layout["SEG"], len(CLASSES))
_instances = torch.unique(_layout["INS"])
_centers = {}
for inst in _instances:
inst = inst.item()
if inst >= bldg_inst_range[0]:
_centers[inst] = torch.from_numpy(city_layout["CTR"][inst]).cuda(device)
_centers[inst][0] -= x_min
_centers[inst][1] -= y_min
_centers[inst + 1] = _centers[inst] # Fix the centers for BLDG_ROOF
else:
_centers[inst] = torch.from_numpy(city_layout["CTR"][inst]).cuda(device)
_centers[inst][0] = x_min
_centers[inst][1] = y_min
_layout["CTR"] = _centers
return _layout
def _get_onehot_seg(seg_map, n_classes):
shape = seg_map.shape
# shape -> NxCxHxW or NxC
# assert shape[1] == 1
output_shape = (shape[0], n_classes, *shape[2:])
one_hot_masks = torch.zeros(output_shape, device=seg_map.device, dtype=torch.bool)
for i in range(n_classes):
one_hot_masks[:, [i]] = seg_map == i
return one_hot_masks
def _get_style_lut(centers, models, inst_ranges, device, z_dim=256):
lut = {ins: torch.rand(1, z_dim, device=device) for ins in centers.keys()}
for k, v in models.items():
if v is None:
continue
if v.module.cfg.Z_DIM is None:
for i in range(*inst_ranges[k]):
if i in lut:
del lut[i]
continue
if hasattr(v.module, "z"):
zs = v.module.z
lut.update(
{
ins: zs[np.random.choice(list(zs.keys()))].unsqueeze(0)
for ins in centers.keys()
}
)
return lut
def _get_orbit_camera_pose(radius, altitude, azimuth, half_proj_size, device):
cx, cy = half_proj_size, half_proj_size
theta = np.deg2rad(azimuth)
cam_x = cx + radius * math.cos(theta)
cam_y = cy + radius * math.sin(theta)
cam_pos = np.array([cam_x, cam_y, altitude], dtype=np.float32)
cam_look_at = np.array([cx, cy, 1], dtype=np.float32)
quat = _get_quat_from_look_at(cam_pos, cam_look_at)
return torch.tensor([*cam_look_at], device=device), torch.tensor(
[*cam_pos, *quat], device=device
)
def _get_quat_from_look_at(cam_pos, cam_look_at):
fwd_vec = cam_look_at - cam_pos
fwd_vec /= np.linalg.norm(fwd_vec)
up_vec = np.array([0, 0, 1])
right_vec = np.cross(up_vec, fwd_vec)
right_vec /= np.linalg.norm(right_vec)
up_vec = np.cross(fwd_vec, right_vec)
R = np.stack([fwd_vec, right_vec, up_vec], axis=1)
return scipy.spatial.transform.Rotation.from_matrix(R).as_quat()
def _get_bev_points(layout, scales, classes):
import gaussiancity.extensions.voxlib
assert torch.max(layout["INS"]) < 16384
# torch.nonzero(torch.zeros(2048, 2048, 512).cuda())
# -> nonzero is not supported for tensors with more than INT_MAX elements
# torch.nonzero(torch.zeros(2048, 2048, 508).cuda())
# -> an illegal memory access was encountered
assert torch.max(layout["TD_HF"]) <= 500
volume = gaussiancity.extensions.voxlib.maps_to_volume(
layout["INS"].squeeze().short(),
layout["TD_HF"].squeeze().short(),
layout["BU_HF"].squeeze().short(),
layout["PTS"].squeeze().bool(),
torch.tensor(
[scales[k] if k in scales else 0 for k in classes.keys()],
dtype=torch.int8,
device=layout["INS"].device,
),
)
non_zero_indices = torch.nonzero(volume, as_tuple=False)
non_zero_values = volume[
non_zero_indices[:, 0], non_zero_indices[:, 1], non_zero_indices[:, 2]
]
return torch.cat(
[non_zero_indices.short(), non_zero_values.unsqueeze(dim=1)], dim=1
)
def _instances_to_classes(instances, bldg_inst_range, bldg_classes):
bldg_facade_idx = (instances >= bldg_inst_range[0]) & (instances % 2 == 0)
bldg_roof_idx = (instances >= bldg_inst_range[0]) & (instances % 2 == 1)
classes = instances.clone()
classes[bldg_facade_idx] = bldg_classes["BLDG_FACADE"]
classes[bldg_roof_idx] = bldg_classes["BLDG_ROOF"]
return classes
def _get_point_scales(pt_classes, scales, classes, special_z_scale_classes=[]):
pt_scales = pt_classes.clone()
for k, v in scales.items():
pt_scales[pt_classes == classes[k]] = v
pt_scales_3d = torch.ones_like(pt_scales).repeat(1, 3) * pt_scales
# Set the z-scale = 1 for roads, zones, and waters
pt_scales_3d[..., 2][
torch.isin(
pt_classes.squeeze(dim=-1),
torch.tensor(
list(special_z_scale_classes),
device=pt_classes.device,
),
)
] = 1
return pt_scales_3d
def _get_visible_points(points, scales, K, sensor_size, cam_pos, cam_look_at):
## NOTE: Each point is assigned with a unique ID. The values in the rendered map
## denotes the visibility of the points. The values are the same as the point IDs.
# Generate 3D volume
volume, offsets = _get_volume(points, scales)
# Ray-voxel intersection
vp_map = _get_ray_voxel_intersection(
K, sensor_size, cam_pos - offsets, cam_look_at - cam_pos, volume
)
## Generate the instance segmentation map as a side product
# ins_map = instances[vp_map]
# null_mask = vp_map == -1
# ins_map[null_mask] = null_class_id
# Manually release the memory to avoid OOM
del volume
torch.cuda.empty_cache()
vp_idx = torch.unique(vp_map)
return vp_idx[vp_idx >= 0]
def _get_volume(points, scales):
import gaussiancity.extensions.voxlib
x_min, x_max = torch.min(points[:, 0]).item(), torch.max(points[:, 0]).item()
y_min, y_max = torch.min(points[:, 1]).item(), torch.max(points[:, 1]).item()
z_min, z_max = torch.min(points[:, 2]).item(), torch.max(points[:, 2]).item()
offsets = torch.tensor(
[x_min, y_min, z_min], dtype=torch.int16, device=points.device
)
# Normalize points coordinates to local coordinate system
points = _get_localized_pt_cords(points, offsets)
# Generate an empty 3D volume
w, h, d = x_max - x_min + 1, y_max - y_min + 1, z_max - z_min + 2
# Generate point IDs
# NOTE: The point IDs start from 1 to avoid the conflict with the NULL class.
assert points.shape[0] < 2147483648
pt_ids = torch.arange(
start=1, end=points.shape[0] + 1, dtype=torch.int32, device=points.device
).unsqueeze(dim=1)
volume = gaussiancity.extensions.voxlib.points_to_volume(
points.contiguous(), pt_ids, scales, h, w, d
)
return volume, offsets
def _get_localized_pt_cords(points, offsets):
points[:, 0] -= offsets[0]
points[:, 1] -= offsets[1]
points[:, 2] -= offsets[2] - 1
return points
def _get_ray_voxel_intersection(K, sensor_size, cam_origin, viewdir, volume):
import gaussiancity.extensions.voxlib
N_MAX_SAMPLES = 1
voxel_id, _, _ = gaussiancity.extensions.voxlib.ray_voxel_intersection_perspective(
volume,
cam_origin[[1, 0, 2]].float(),
viewdir[[1, 0, 2]].float(),
torch.tensor([0, 0, 1], dtype=torch.float32),
K[0],
[K[5], K[2]],
[sensor_size[1], sensor_size[0]],
N_MAX_SAMPLES,
)
# NOTE: The point ID for NULL class is -1, the rest point IDs are from 0 to N - 1.
# The ray_voxel_intersection_perspective seems not accepting the negative values.
return voxel_id.squeeze() - 1
def get_hf_seg_tensor(part_hf, part_seg, layout_cfg, output_device):
part_hf = torch.from_numpy(part_hf[None, None, ...]).to(output_device)
part_seg = torch.from_numpy(part_seg[None, None, ...]).to(output_device)
part_hf = part_hf / CONSTANTS["LAYOUT_MAX_HEIGHT"]
part_seg = _masks_to_onehots(part_seg[:, 0, :, :], CONSTANTS["LAYOUT_N_CLASSES"])
return torch.cat([part_hf, part_seg], dim=1)
def _masks_to_onehots(masks, n_class, ignored_classes=[]):
b, h, w = masks.shape
n_class_actual = n_class - len(ignored_classes)
one_hot_masks = torch.zeros(
(b, n_class_actual, h, w), dtype=torch.float32, device=masks.device
)
n_class_cnt = 0
for i in range(n_class):
if i not in ignored_classes:
one_hot_masks[:, n_class_cnt] = masks == i
n_class_cnt += 1
return one_hot_masks
def _get_gs_attrs(
pts,
proj_hf,
proj_seg,
style_lut,
centers,
models,
scale_factor,
bldg_inst_range,
):
n_pts, _ = pts.shape
# NOTE: 4: XYZ, Instance ID; 3: Scale; N_CLASSES: One-hot
# print(pts.shape) # [N, 4 + 3 + N_CLASSES]
bldg_selector = pts[:, 3] >= bldg_inst_range[0]
bldg_pts = pts[bldg_selector]
rest_pts = pts[~bldg_selector]
bldg_attrs = _get_pt_input_attrs(
bldg_pts[:, :4],
centers,
style_lut,
models["BLDG"].module.cfg.Z_DIM,
bldg_inst_range,
)
rest_attrs = _get_pt_input_attrs(
rest_pts[:, :4],
centers,
style_lut,
models["REST"].module.cfg.Z_DIM,
bldg_inst_range,
)
bldg_colors = _get_gs_colors(
bldg_pts, bldg_attrs, proj_hf, proj_seg, models["BLDG"]
)
rest_colors = _get_gs_colors(
rest_pts, rest_attrs, proj_hf, proj_seg, models["REST"]
)
abs_xyz = torch.cat([bldg_pts[:, :3], rest_pts[:, :3]], dim=0)
scales = torch.cat([bldg_pts[:, 4:7], rest_pts[:, 4:7]], dim=0) * scale_factor
rgb = torch.cat([bldg_colors, rest_colors], dim=0)
# Attributes with default values
opacity = torch.ones((n_pts, 1), device=pts.device)
rotations = torch.cat(
[
torch.ones(n_pts, 1, device=pts.device),
torch.zeros(n_pts, 3, device=pts.device),
],
dim=-1,
)
return torch.cat((abs_xyz, opacity, scales, rotations, rgb), dim=-1)
def _get_pt_input_attrs(pts, centers, style_lut, z_dim, bldg_inst_range):
n_pts = pts.shape[0]
instances = torch.unique(pts[:, -1])
rel_xyz = torch.zeros(1, n_pts, 3, dtype=torch.float32, device=pts.device)
batch_idx = torch.zeros(1, n_pts, dtype=torch.int32, device=pts.device)
zs = {} if z_dim is not None else None
for idx, ins in enumerate(instances):
ins = ins.item()
is_pts = pts[:, -1] == ins
cx, cy, w, h, d = centers[ins]
if ins >= bldg_inst_range[0]:
rel_xyz[:, is_pts, 0] = (pts[is_pts, 0] - cx) / w * 2 if w > 0 else 0
rel_xyz[:, is_pts, 1] = (pts[is_pts, 1] - cy) / h * 2 if h > 0 else 0
else:
# Make the BG contiguous
period_x = torch.ceil((pts[is_pts, 0] / w / 2) - 0.5)
period_y = torch.ceil((pts[is_pts, 1] / h / 2) - 0.5)
rel_xyz[:, is_pts, 0] = (
(pts[is_pts, 0] - 2 * period_x * w) * (-1) ** period_x
) / w
rel_xyz[:, is_pts, 1] = (
(pts[is_pts, 1] - 2 * period_y * h) * (-1) ** period_y
) / h
rel_xyz[:, is_pts, 2] = (
torch.clip(pts[is_pts, 2] / d * 2 - 1, -1, 1) if d > 0 else 0
)
batch_idx[:, is_pts] = idx
if zs is not None:
zs[ins] = {"z": style_lut[ins], "idx": is_pts.unsqueeze(dim=0)}
return rel_xyz, batch_idx, zs
def _get_gs_colors(pts, pt_attrs, proj_hf, proj_seg, model):
if pts.shape[0] == 0:
return torch.empty(0, 3, dtype=torch.float32, device=pts.device)
abs_xyz, onehots = pts[None, :, :3], pts[None, :, 7:]
rel_xyz, batch_idx, zs = pt_attrs
proj_uv = None
if model.module.cfg.ENCODER is not None:
proj_uv = get_projection_uv(abs_xyz)
with torch.no_grad():
# TODO: Optimize the _instance_forward in Generator
gs_attrs = model(
proj_uv, rel_xyz, batch_idx, onehots.float(), zs, proj_hf, proj_seg
)
return gs_attrs["rgb"].squeeze(dim=0)
def get_projection_uv(xyz, proj_tlp=None, proj_size=2048):
n_pts = xyz.size(1)
if proj_tlp is None:
proj_uv = xyz[..., :2].clone().float()
else:
proj_uv = xyz[..., :2] - proj_tlp.unsqueeze(dim=1)
assert proj_uv.size() == (xyz.size(0), n_pts, 2)
proj_uv[..., 0] /= proj_size
proj_uv[..., 1] /= proj_size
# Normalize to [-1, 1]
return proj_uv * 2 - 1
def _render(gs_attrs, rasterizator, cam_pose):
import torchvision.transforms.functional as F
with torch.no_grad():
img = rasterizator(
gs_attrs,
cam_pose[:3], # Position
cam_pose[3:], # Quaternion
)
img = img.squeeze() / 2 + 0.5
img = F.adjust_brightness(img, 1.2)
img = F.adjust_contrast(img, 1.2)
return (img * 255).permute(1, 2, 0).cpu().numpy().astype(np.uint8)
|