Spaces:
Runtime error
Runtime error
File size: 6,154 Bytes
79df973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# -*- coding: utf-8 -*-
#
# @File: __init__.py
# @Author: Jiaxiang Tang (@ashawkey)
# @Date: 2023-04-15 10:39:28
# @Last Modified by: Haozhe Xie
# @Last Modified at: 2023-04-15 13:08:46
# @Email: [email protected]
# @Ref: https://github.com/ashawkey/torch-ngp
import math
import numpy as np
import torch
import grid_encoder_ext
class GridEncoderFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
inputs,
embeddings,
offsets,
per_level_scale,
base_resolution,
calc_grad_inputs=False,
gridtype=0,
align_corners=False,
):
# inputs: [B, D], float in [0, 1]
# embeddings: [sO, C], float
# offsets: [L + 1], int
# RETURN: [B, F], float
inputs = inputs.contiguous()
# batch size, coord dim
B, D = inputs.shape
# level
L = offsets.shape[0] - 1
# embedding dim for each level
C = embeddings.shape[1]
# resolution multiplier at each level, apply log2 for later CUDA exp2f
S = math.log2(per_level_scale)
# base resolution
H = base_resolution
# L first, optimize cache for cuda kernel, but needs an extra permute later
outputs = torch.empty(L, B, C, device=inputs.device, dtype=embeddings.dtype)
if calc_grad_inputs:
dy_dx = torch.empty(
B, L * D * C, device=inputs.device, dtype=embeddings.dtype
)
else:
dy_dx = torch.empty(
1, device=inputs.device, dtype=embeddings.dtype
) # placeholder... TODO: a better way?
grid_encoder_ext.forward(
inputs,
embeddings,
offsets,
outputs,
B,
D,
C,
L,
S,
H,
calc_grad_inputs,
dy_dx,
gridtype,
align_corners,
)
# permute back to [B, L * C]
outputs = outputs.permute(1, 0, 2).reshape(B, L * C)
ctx.save_for_backward(inputs, embeddings, offsets, dy_dx)
ctx.dims = [B, D, C, L, S, H, gridtype]
ctx.calc_grad_inputs = calc_grad_inputs
ctx.align_corners = align_corners
return outputs
@staticmethod
def backward(ctx, grad):
inputs, embeddings, offsets, dy_dx = ctx.saved_tensors
B, D, C, L, S, H, gridtype = ctx.dims
calc_grad_inputs = ctx.calc_grad_inputs
align_corners = ctx.align_corners
# grad: [B, L * C] --> [L, B, C]
grad = grad.view(B, L, C).permute(1, 0, 2).contiguous()
grad_embeddings = torch.zeros_like(embeddings)
if calc_grad_inputs:
grad_inputs = torch.zeros_like(inputs, dtype=embeddings.dtype)
else:
grad_inputs = torch.zeros(1, device=inputs.device, dtype=embeddings.dtype)
grid_encoder_ext.backward(
grad,
inputs,
embeddings,
offsets,
grad_embeddings,
B,
D,
C,
L,
S,
H,
calc_grad_inputs,
dy_dx,
grad_inputs,
gridtype,
align_corners,
)
if calc_grad_inputs:
grad_inputs = grad_inputs.to(inputs.dtype)
return grad_inputs, grad_embeddings, None, None, None, None, None, None
else:
return None, grad_embeddings, None, None, None, None, None, None
class GridEncoder(torch.nn.Module):
def __init__(
self,
in_channels,
n_levels,
lvl_channels,
desired_resolution,
per_level_scale=2,
base_resolution=16,
log2_hashmap_size=19,
gridtype="hash",
align_corners=False,
):
super(GridEncoder, self).__init__()
self.in_channels = in_channels
self.n_levels = n_levels # num levels, each level multiply resolution by 2
self.lvl_channels = lvl_channels # encode channels per level
self.per_level_scale = 2 ** (
math.log2(desired_resolution / base_resolution) / (n_levels - 1)
)
self.log2_hashmap_size = log2_hashmap_size
self.base_resolution = base_resolution
self.output_dim = n_levels * lvl_channels
self.gridtype = gridtype
self.gridtype_id = 0 if gridtype == "hash" else 1
self.align_corners = align_corners
# allocate parameters
offsets = []
offset = 0
self.max_params = 2**log2_hashmap_size
for i in range(n_levels):
resolution = int(math.ceil(base_resolution * per_level_scale**i))
params_in_level = min(
self.max_params,
(resolution if align_corners else resolution + 1) ** in_channels,
) # limit max number
params_in_level = int(math.ceil(params_in_level / 8) * 8) # make divisible
offsets.append(offset)
offset += params_in_level
offsets.append(offset)
offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
self.register_buffer("offsets", offsets)
self.n_params = offsets[-1] * lvl_channels
self.embeddings = torch.nn.Parameter(torch.empty(offset, lvl_channels))
self._init_weights()
def _init_weights(self):
self.embeddings.data.uniform_(-1e-4, 1e-4)
def forward(self, inputs, bound=1):
# inputs: [..., in_channels], normalized real world positions in [-bound, bound]
# return: [..., n_levels * lvl_channels]
inputs = (inputs + bound) / (2 * bound) # map to [0, 1]
prefix_shape = list(inputs.shape[:-1])
inputs = inputs.view(-1, self.in_channels)
outputs = GridEncoderFunction.apply(
inputs,
self.embeddings,
self.offsets,
self.per_level_scale,
self.base_resolution,
inputs.requires_grad,
self.gridtype_id,
self.align_corners,
)
return outputs.view(prefix_shape + [self.output_dim])
|