Spaces:
Build error
Build error
File size: 4,086 Bytes
2071150 af5f89c 2071150 3aac243 2071150 af5f89c 2071150 af5f89c 3aac243 2071150 af5f89c 2071150 af5f89c 2071150 af5f89c 2071150 3aac243 2071150 af5f89c 2071150 af5f89c 2071150 3aac243 2071150 3aac243 2071150 3aac243 2071150 af5f89c 3aac243 2071150 af5f89c 5664eba af5f89c 4569f2f 3aac243 4569f2f 3aac243 af5f89c 3aac243 af5f89c 3aac243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/usr/bin/env python
import os
import pathlib
import cv2
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import pretrainedmodels
import torch
import torch.nn.functional as F # noqa: N812
from torch import nn
DESCRIPTION = "# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)"
def get_model(
model_name: str = "se_resnext50_32x4d", num_classes: int = 101, pretrained: str | None = "imagenet"
) -> nn.Module:
model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
dim_feats = model.last_linear.in_features
model.last_linear = nn.Linear(dim_feats, num_classes)
model.avg_pool = nn.AdaptiveAvgPool2d(1)
return model
def load_model(device: torch.device) -> nn.Module:
model = get_model(model_name="se_resnext50_32x4d", pretrained=None)
path = huggingface_hub.hf_hub_download("public-data/yu4u-age-estimation-pytorch", "pretrained.pth")
model.load_state_dict(torch.load(path))
model = model.to(device)
model.eval()
return model
def load_image(path: str) -> np.ndarray:
image = cv2.imread(path)
h_orig, w_orig = image.shape[:2]
size = max(h_orig, w_orig)
scale = 640 / size
w, h = int(w_orig * scale), int(h_orig * scale)
return cv2.resize(image, (w, h))
def draw_label(
image: np.ndarray,
point: tuple[int, int],
label: str,
font: int = cv2.FONT_HERSHEY_SIMPLEX,
font_scale: float = 0.8,
thickness: int = 1,
) -> None:
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
face_detector = dlib.get_frontal_face_detector()
@torch.inference_mode()
def predict(
image_path: str,
margin: float = 0.4,
input_size: int = 224,
) -> np.ndarray:
image = cv2.imread(image_path, cv2.IMREAD_COLOR)[:, :, ::-1].copy()
image_h, image_w = image.shape[:2]
# detect faces using dlib detector
detected = face_detector(image, 1)
faces = np.empty((len(detected), input_size, input_size, 3))
if len(detected) > 0:
for i, d in enumerate(detected):
x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
xw1 = max(int(x1 - margin * w), 0)
yw1 = max(int(y1 - margin * h), 0)
xw2 = min(int(x2 + margin * w), image_w - 1)
yw2 = min(int(y2 + margin * h), image_h - 1)
faces[i] = cv2.resize(image[yw1 : yw2 + 1, xw1 : xw2 + 1], (input_size, input_size))
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
# predict ages
inputs = torch.from_numpy(np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
ages = np.arange(0, 101)
predicted_ages = (outputs * ages).sum(axis=-1)
# draw results
for age, d in zip(predicted_ages, detected, strict=True):
draw_label(image, (d.left(), d.top()), f"{int(age)}")
return image
examples = sorted(pathlib.Path("sample_images").glob("*.jpg"))
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="filepath")
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
gr.Examples(
examples=examples,
inputs=image,
outputs=result,
fn=predict,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=predict,
inputs=image,
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()
|