File size: 4,086 Bytes
2071150
 
 
 
 
 
 
 
 
 
 
 
af5f89c
 
2071150
3aac243
2071150
 
af5f89c
 
 
2071150
 
 
 
 
 
 
af5f89c
3aac243
 
2071150
 
 
 
 
 
af5f89c
2071150
 
 
 
 
af5f89c
2071150
 
af5f89c
 
 
 
 
 
 
 
2071150
 
3aac243
 
2071150
 
af5f89c
 
 
 
 
2071150
af5f89c
 
 
 
 
 
2071150
 
 
 
 
 
 
 
3aac243
2071150
 
 
 
3aac243
2071150
 
 
 
 
3aac243
2071150
 
 
 
 
af5f89c
3aac243
2071150
 
 
af5f89c
5664eba
af5f89c
4569f2f
 
 
3aac243
 
4569f2f
3aac243
 
 
 
 
 
af5f89c
3aac243
 
 
af5f89c
3aac243
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python

import os
import pathlib

import cv2
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import pretrainedmodels
import torch
import torch.nn.functional as F  # noqa: N812
from torch import nn

DESCRIPTION = "# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)"


def get_model(
    model_name: str = "se_resnext50_32x4d", num_classes: int = 101, pretrained: str | None = "imagenet"
) -> nn.Module:
    model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
    dim_feats = model.last_linear.in_features
    model.last_linear = nn.Linear(dim_feats, num_classes)
    model.avg_pool = nn.AdaptiveAvgPool2d(1)
    return model


def load_model(device: torch.device) -> nn.Module:
    model = get_model(model_name="se_resnext50_32x4d", pretrained=None)
    path = huggingface_hub.hf_hub_download("public-data/yu4u-age-estimation-pytorch", "pretrained.pth")
    model.load_state_dict(torch.load(path))
    model = model.to(device)
    model.eval()
    return model


def load_image(path: str) -> np.ndarray:
    image = cv2.imread(path)
    h_orig, w_orig = image.shape[:2]
    size = max(h_orig, w_orig)
    scale = 640 / size
    w, h = int(w_orig * scale), int(h_orig * scale)
    return cv2.resize(image, (w, h))


def draw_label(
    image: np.ndarray,
    point: tuple[int, int],
    label: str,
    font: int = cv2.FONT_HERSHEY_SIMPLEX,
    font_scale: float = 0.8,
    thickness: int = 1,
) -> None:
    size = cv2.getTextSize(label, font, font_scale, thickness)[0]
    x, y = point
    cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
    cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
face_detector = dlib.get_frontal_face_detector()


@torch.inference_mode()
def predict(
    image_path: str,
    margin: float = 0.4,
    input_size: int = 224,
) -> np.ndarray:
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)[:, :, ::-1].copy()
    image_h, image_w = image.shape[:2]

    # detect faces using dlib detector
    detected = face_detector(image, 1)
    faces = np.empty((len(detected), input_size, input_size, 3))

    if len(detected) > 0:
        for i, d in enumerate(detected):
            x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
            xw1 = max(int(x1 - margin * w), 0)
            yw1 = max(int(y1 - margin * h), 0)
            xw2 = min(int(x2 + margin * w), image_w - 1)
            yw2 = min(int(y2 + margin * h), image_h - 1)
            faces[i] = cv2.resize(image[yw1 : yw2 + 1, xw1 : xw2 + 1], (input_size, input_size))

            cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
            cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)

        # predict ages
        inputs = torch.from_numpy(np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
        outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
        ages = np.arange(0, 101)
        predicted_ages = (outputs * ages).sum(axis=-1)

        # draw results
        for age, d in zip(predicted_ages, detected, strict=True):
            draw_label(image, (d.left(), d.top()), f"{int(age)}")
    return image


examples = sorted(pathlib.Path("sample_images").glob("*.jpg"))

with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Input", type="filepath")
            run_button = gr.Button("Run")
        with gr.Column():
            result = gr.Image(label="Result")

    gr.Examples(
        examples=examples,
        inputs=image,
        outputs=result,
        fn=predict,
        cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
    )
    run_button.click(
        fn=predict,
        inputs=image,
        outputs=result,
        api_name="predict",
    )

if __name__ == "__main__":
    demo.queue(max_size=15).launch()