Spaces:
Build error
Build error
Update
Browse files- .pre-commit-config.yaml +2 -12
- README.md +1 -1
- app.py +94 -128
- model.py +19 -23
- requirements.txt +1 -1
.pre-commit-config.yaml
CHANGED
@@ -21,11 +21,11 @@ repos:
|
|
21 |
- id: docformatter
|
22 |
args: ['--in-place']
|
23 |
- repo: https://github.com/pycqa/isort
|
24 |
-
rev: 5.
|
25 |
hooks:
|
26 |
- id: isort
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
-
rev: v0.
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
args: ['--ignore-missing-imports']
|
@@ -34,13 +34,3 @@ repos:
|
|
34 |
hooks:
|
35 |
- id: yapf
|
36 |
args: ['--parallel', '--in-place']
|
37 |
-
- repo: https://github.com/kynan/nbstripout
|
38 |
-
rev: 0.5.0
|
39 |
-
hooks:
|
40 |
-
- id: nbstripout
|
41 |
-
args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
|
42 |
-
- repo: https://github.com/nbQA-dev/nbQA
|
43 |
-
rev: 1.3.1
|
44 |
-
hooks:
|
45 |
-
- id: nbqa-isort
|
46 |
-
- id: nbqa-yapf
|
|
|
21 |
- id: docformatter
|
22 |
args: ['--in-place']
|
23 |
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.12.0
|
25 |
hooks:
|
26 |
- id: isort
|
27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.991
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
args: ['--ignore-missing-imports']
|
|
|
34 |
hooks:
|
35 |
- id: yapf
|
36 |
args: ['--parallel', '--in-place']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🦀
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.19.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import argparse
|
6 |
import pathlib
|
7 |
import tarfile
|
8 |
|
@@ -15,21 +14,7 @@ DESCRIPTION = '''# ViTPose
|
|
15 |
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).
|
16 |
|
17 |
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)
|
18 |
-
|
19 |
'''
|
20 |
-
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose_video" />'
|
21 |
-
|
22 |
-
|
23 |
-
def parse_args() -> argparse.Namespace:
|
24 |
-
parser = argparse.ArgumentParser()
|
25 |
-
parser.add_argument('--device', type=str, default='cpu')
|
26 |
-
parser.add_argument('--theme', type=str)
|
27 |
-
parser.add_argument('--share', action='store_true')
|
28 |
-
parser.add_argument('--port', type=int)
|
29 |
-
parser.add_argument('--disable-queue',
|
30 |
-
dest='enable_queue',
|
31 |
-
action='store_false')
|
32 |
-
return parser.parse_args()
|
33 |
|
34 |
|
35 |
def set_example_video(example: list) -> dict:
|
@@ -43,116 +28,97 @@ def extract_tar() -> None:
|
|
43 |
f.extractall('mmdet_configs')
|
44 |
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
with gr.
|
54 |
-
gr.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
vis_kpt_score_threshold,
|
141 |
-
vis_dot_radius,
|
142 |
-
vis_line_thickness,
|
143 |
-
],
|
144 |
-
outputs=result)
|
145 |
-
|
146 |
-
example_videos.click(fn=set_example_video,
|
147 |
-
inputs=example_videos,
|
148 |
-
outputs=input_video)
|
149 |
-
|
150 |
-
demo.launch(
|
151 |
-
enable_queue=args.enable_queue,
|
152 |
-
server_port=args.port,
|
153 |
-
share=args.share,
|
154 |
-
)
|
155 |
-
|
156 |
-
|
157 |
-
if __name__ == '__main__':
|
158 |
-
main()
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
5 |
import pathlib
|
6 |
import tarfile
|
7 |
|
|
|
14 |
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).
|
15 |
|
16 |
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)
|
|
|
17 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def set_example_video(example: list) -> dict:
|
|
|
28 |
f.extractall('mmdet_configs')
|
29 |
|
30 |
|
31 |
+
extract_tar()
|
32 |
+
|
33 |
+
model = AppModel()
|
34 |
+
|
35 |
+
with gr.Blocks(css='style.css') as demo:
|
36 |
+
gr.Markdown(DESCRIPTION)
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
input_video = gr.Video(label='Input Video',
|
41 |
+
format='mp4',
|
42 |
+
elem_id='input_video')
|
43 |
+
detector_name = gr.Dropdown(list(
|
44 |
+
model.det_model.MODEL_DICT.keys()),
|
45 |
+
value=model.det_model.model_name,
|
46 |
+
label='Detector')
|
47 |
+
pose_model_name = gr.Dropdown(list(
|
48 |
+
model.pose_model.MODEL_DICT.keys()),
|
49 |
+
value=model.pose_model.model_name,
|
50 |
+
label='Pose Model')
|
51 |
+
det_score_threshold = gr.Slider(0,
|
52 |
+
1,
|
53 |
+
step=0.05,
|
54 |
+
value=0.5,
|
55 |
+
label='Box Score Threshold')
|
56 |
+
max_num_frames = gr.Slider(1,
|
57 |
+
300,
|
58 |
+
step=1,
|
59 |
+
value=60,
|
60 |
+
label='Maximum Number of Frames')
|
61 |
+
predict_button = gr.Button(value='Predict')
|
62 |
+
pose_preds = gr.Variable()
|
63 |
+
|
64 |
+
paths = sorted(pathlib.Path('videos').rglob('*.mp4'))
|
65 |
+
example_videos = gr.Dataset(components=[input_video],
|
66 |
+
samples=[[path.as_posix()]
|
67 |
+
for path in paths])
|
68 |
+
|
69 |
+
with gr.Column():
|
70 |
+
result = gr.Video(label='Result', format='mp4', elem_id='result')
|
71 |
+
vis_kpt_score_threshold = gr.Slider(
|
72 |
+
0,
|
73 |
+
1,
|
74 |
+
step=0.05,
|
75 |
+
value=0.3,
|
76 |
+
label='Visualization Score Threshold')
|
77 |
+
vis_dot_radius = gr.Slider(1,
|
78 |
+
10,
|
79 |
+
step=1,
|
80 |
+
value=4,
|
81 |
+
label='Dot Radius')
|
82 |
+
vis_line_thickness = gr.Slider(1,
|
83 |
+
10,
|
84 |
+
step=1,
|
85 |
+
value=2,
|
86 |
+
label='Line Thickness')
|
87 |
+
redraw_button = gr.Button(value='Redraw')
|
88 |
+
|
89 |
+
detector_name.change(fn=model.det_model.set_model,
|
90 |
+
inputs=detector_name,
|
91 |
+
outputs=None)
|
92 |
+
pose_model_name.change(fn=model.pose_model.set_model,
|
93 |
+
inputs=pose_model_name,
|
94 |
+
outputs=None)
|
95 |
+
predict_button.click(fn=model.run,
|
96 |
+
inputs=[
|
97 |
+
input_video,
|
98 |
+
detector_name,
|
99 |
+
pose_model_name,
|
100 |
+
det_score_threshold,
|
101 |
+
max_num_frames,
|
102 |
+
vis_kpt_score_threshold,
|
103 |
+
vis_dot_radius,
|
104 |
+
vis_line_thickness,
|
105 |
+
],
|
106 |
+
outputs=[
|
107 |
+
result,
|
108 |
+
pose_preds,
|
109 |
+
])
|
110 |
+
redraw_button.click(fn=model.visualize_pose_results,
|
111 |
+
inputs=[
|
112 |
+
input_video,
|
113 |
+
pose_preds,
|
114 |
+
vis_kpt_score_threshold,
|
115 |
+
vis_dot_radius,
|
116 |
+
vis_line_thickness,
|
117 |
+
],
|
118 |
+
outputs=result)
|
119 |
+
|
120 |
+
example_videos.click(fn=set_example_video,
|
121 |
+
inputs=example_videos,
|
122 |
+
outputs=input_video)
|
123 |
+
|
124 |
+
demo.queue().launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
|
|
4 |
import subprocess
|
5 |
import sys
|
6 |
import tempfile
|
@@ -11,9 +12,10 @@ if os.getenv('SYSTEM') == 'spaces':
|
|
11 |
mim.uninstall('mmcv-full', confirm_yes=True)
|
12 |
mim.install('mmcv-full==1.5.0', is_yes=True)
|
13 |
|
14 |
-
subprocess.call('pip uninstall -y opencv-python'
|
15 |
-
subprocess.call('pip uninstall -y opencv-python-headless'
|
16 |
-
subprocess.call(
|
|
|
17 |
|
18 |
import cv2
|
19 |
import huggingface_hub
|
@@ -27,7 +29,7 @@ from mmdet.apis import inference_detector, init_detector
|
|
27 |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
28 |
process_mmdet_results, vis_pose_result)
|
29 |
|
30 |
-
HF_TOKEN = os.
|
31 |
|
32 |
|
33 |
class DetModel:
|
@@ -58,8 +60,9 @@ class DetModel:
|
|
58 |
},
|
59 |
}
|
60 |
|
61 |
-
def __init__(self
|
62 |
-
self.device = torch.device(
|
|
|
63 |
self._load_all_models_once()
|
64 |
self.model_name = 'YOLOX-l'
|
65 |
self.model = self._load_model(self.model_name)
|
@@ -131,8 +134,9 @@ class PoseModel:
|
|
131 |
},
|
132 |
}
|
133 |
|
134 |
-
def __init__(self
|
135 |
-
self.device = torch.device(
|
|
|
136 |
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
137 |
self.model = self._load_model(self.model_name)
|
138 |
|
@@ -199,9 +203,9 @@ class PoseModel:
|
|
199 |
|
200 |
|
201 |
class AppModel:
|
202 |
-
def __init__(self
|
203 |
-
self.det_model = DetModel(
|
204 |
-
self.pose_model = PoseModel(
|
205 |
|
206 |
def run(
|
207 |
self, video_path: str, det_model_name: str, pose_model_name: str,
|
@@ -222,8 +226,8 @@ class AppModel:
|
|
222 |
preds_all = []
|
223 |
|
224 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
225 |
-
|
226 |
-
writer = cv2.VideoWriter(
|
227 |
for _ in range(max_num_frames):
|
228 |
ok, frame = cap.read()
|
229 |
if not ok:
|
@@ -238,10 +242,6 @@ class AppModel:
|
|
238 |
cap.release()
|
239 |
writer.release()
|
240 |
|
241 |
-
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
242 |
-
subprocess.run(
|
243 |
-
f'ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}'
|
244 |
-
.split())
|
245 |
return out_file.name, preds_all
|
246 |
|
247 |
def visualize_pose_results(self, video_path: str,
|
@@ -257,8 +257,8 @@ class AppModel:
|
|
257 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
258 |
|
259 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
260 |
-
|
261 |
-
writer = cv2.VideoWriter(
|
262 |
for pose_preds in pose_preds_all:
|
263 |
ok, frame = cap.read()
|
264 |
if not ok:
|
@@ -271,8 +271,4 @@ class AppModel:
|
|
271 |
cap.release()
|
272 |
writer.release()
|
273 |
|
274 |
-
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
275 |
-
subprocess.run(
|
276 |
-
f'ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}'
|
277 |
-
.split())
|
278 |
return out_file.name
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
import os
|
4 |
+
import shlex
|
5 |
import subprocess
|
6 |
import sys
|
7 |
import tempfile
|
|
|
12 |
mim.uninstall('mmcv-full', confirm_yes=True)
|
13 |
mim.install('mmcv-full==1.5.0', is_yes=True)
|
14 |
|
15 |
+
subprocess.call(shlex.split('pip uninstall -y opencv-python'))
|
16 |
+
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless'))
|
17 |
+
subprocess.call(
|
18 |
+
shlex.split('pip install opencv-python-headless==4.5.5.64'))
|
19 |
|
20 |
import cv2
|
21 |
import huggingface_hub
|
|
|
29 |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
30 |
process_mmdet_results, vis_pose_result)
|
31 |
|
32 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
33 |
|
34 |
|
35 |
class DetModel:
|
|
|
60 |
},
|
61 |
}
|
62 |
|
63 |
+
def __init__(self):
|
64 |
+
self.device = torch.device(
|
65 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
66 |
self._load_all_models_once()
|
67 |
self.model_name = 'YOLOX-l'
|
68 |
self.model = self._load_model(self.model_name)
|
|
|
134 |
},
|
135 |
}
|
136 |
|
137 |
+
def __init__(self):
|
138 |
+
self.device = torch.device(
|
139 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
140 |
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
141 |
self.model = self._load_model(self.model_name)
|
142 |
|
|
|
203 |
|
204 |
|
205 |
class AppModel:
|
206 |
+
def __init__(self):
|
207 |
+
self.det_model = DetModel()
|
208 |
+
self.pose_model = PoseModel()
|
209 |
|
210 |
def run(
|
211 |
self, video_path: str, det_model_name: str, pose_model_name: str,
|
|
|
226 |
preds_all = []
|
227 |
|
228 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
229 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
230 |
+
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
|
231 |
for _ in range(max_num_frames):
|
232 |
ok, frame = cap.read()
|
233 |
if not ok:
|
|
|
242 |
cap.release()
|
243 |
writer.release()
|
244 |
|
|
|
|
|
|
|
|
|
245 |
return out_file.name, preds_all
|
246 |
|
247 |
def visualize_pose_results(self, video_path: str,
|
|
|
257 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
258 |
|
259 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
260 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
261 |
+
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
|
262 |
for pose_preds in pose_preds_all:
|
263 |
ok, frame = cap.read()
|
264 |
if not ok:
|
|
|
271 |
cap.release()
|
272 |
writer.release()
|
273 |
|
|
|
|
|
|
|
|
|
274 |
return out_file.name
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
mmcv-full==1.5.0
|
2 |
mmdet==2.24.1
|
3 |
mmpose==0.25.1
|
4 |
-
numpy==1.
|
5 |
opencv-python-headless==4.5.5.64
|
6 |
openmim==0.1.5
|
7 |
timm==0.5.4
|
|
|
1 |
mmcv-full==1.5.0
|
2 |
mmdet==2.24.1
|
3 |
mmpose==0.25.1
|
4 |
+
numpy==1.23.5
|
5 |
opencv-python-headless==4.5.5.64
|
6 |
openmim==0.1.5
|
7 |
timm==0.5.4
|