import math
from typing import Tuple, Type
import torch
from torch import nn, Tensor
from .mlp import MLPBlock




class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module],
        normalize_before_activation: bool,
        attention_downsample_rate: int = 2,
    ) -> None:
        """
        A transformer decoder that attends to an input image using
        queries whose positional embedding is supplied.

        Args:
          depth (int): number of layers in the transformer
          embedding_dim (int): the channel dimension for the input embeddings
          num_heads (int): the number of heads for multihead attention. Must
            divide embedding_dim
          mlp_dim (int): the channel dimension internal to the MLP block
          activation (nn.Module): the activation to use in the MLP block
        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            curr_layer = TwoWayAttentionBlock(
                embedding_dim=embedding_dim,
                num_heads=num_heads,
                mlp_dim=mlp_dim,
                activation=activation,
                normalize_before_activation=normalize_before_activation,
                attention_downsample_rate=attention_downsample_rate,
                skip_first_layer_pe=(i == 0),
            )
            self.layers.append(curr_layer)

        self.final_attn_token_to_image = AttentionForTwoWayAttentionBlock(
            embedding_dim,
            num_heads,
            downsample_rate=attention_downsample_rate,
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,
        image_pe: Tensor,
        point_embedding: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        """
        Args:
          image_embedding (torch.Tensor): image to attend to. Should be shape
            B x embedding_dim x h x w for any h and w.
          image_pe (torch.Tensor): the positional encoding to add to the image. Must
            have the same shape as image_embedding.
          point_embedding (torch.Tensor): the embedding to add to the query points.
            Must have shape B x N_points x embedding_dim for any N_points.

        Returns:
          torch.Tensor: the processed point_embedding
          torch.Tensor: the processed image_embedding
        """

        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for idx, layer in enumerate(self.layers):
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)
        return queries, keys


class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module],
        normalize_before_activation: bool,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        """
        A transformer block with four layers: (1) self-attention of sparse
        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
        block on sparse inputs, and (4) cross attention of dense inputs to sparse
        inputs.

        Arguments:
          embedding_dim (int): the channel dimension of the embeddings
          num_heads (int): the number of heads in the attention layers
          mlp_dim (int): the hidden dimension of the mlp block
          activation (nn.Module): the activation of the mlp block
          skip_first_layer_pe (bool): skip the PE on the first layer
        """
        super().__init__()
        self.self_attn = AttentionForTwoWayAttentionBlock(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = AttentionForTwoWayAttentionBlock(
            embedding_dim,
            num_heads,
            downsample_rate=attention_downsample_rate,
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(
            embedding_dim,
            mlp_dim,
            embedding_dim,
            1,
            activation,
        )

        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = AttentionForTwoWayAttentionBlock(
            embedding_dim,
            num_heads,
            downsample_rate=attention_downsample_rate,
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if not self.skip_first_layer_pe:
            queries = queries + query_pe
        attn_out = self.self_attn(q=queries, k=queries, v=queries)
        queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class AttentionForTwoWayAttentionBlock(nn.Module):
    """
    An attention layer that allows for downscaling the size of the embedding
    after projection to queries, keys, and values.
    """

    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        downsample_rate: int = 1,
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert (
            self.internal_dim % num_heads == 0
        ), "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
        self._reset_parameters()

    def _reset_parameters(self) -> None:
        # The fan_out is incorrect, but matches pytorch's initialization
        # for which qkv is a single 3*embedding_dim x embedding_dim matrix
        fan_in = self.embedding_dim
        fan_out = 3 * self.internal_dim
        # Xavier uniform with our custom fan_out
        bnd = math.sqrt(6 / (fan_in + fan_out))
        nn.init.uniform_(self.q_proj.weight, -bnd, bnd)
        nn.init.uniform_(self.k_proj.weight, -bnd, bnd)
        nn.init.uniform_(self.v_proj.weight, -bnd, bnd)
        # out_proj.weight is left with default initialization, like pytorch attention
        nn.init.zeros_(self.q_proj.bias)
        nn.init.zeros_(self.k_proj.bias)
        nn.init.zeros_(self.v_proj.bias)
        nn.init.zeros_(self.out_proj.bias)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)
        # Get output
        out = attn @ v
        out = self._recombine_heads(out)
        out = self.out_proj(out)
        return out