hyo37009 commited on
Commit
358bcb3
·
1 Parent(s): f92fabc
Files changed (1) hide show
  1. app.py +110 -0
app.py CHANGED
@@ -1,7 +1,14 @@
 
 
 
 
 
 
1
  from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
2
  from PIL import Image
3
  import requests
4
 
 
5
  feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
6
  model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
7
 
@@ -11,3 +18,106 @@ image = Image.open(requests.get(url, stream=True).raw)
11
  inputs = feature_extractor(images=image, return_tensors="pt")
12
  outputs = model(**inputs)
13
  logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import tensorflow as tf
7
  from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
8
  from PIL import Image
9
  import requests
10
 
11
+
12
  feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
13
  model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280")
14
 
 
18
  inputs = feature_extractor(images=image, return_tensors="pt")
19
  outputs = model(**inputs)
20
  logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
21
+
22
+ def ade_palette():
23
+ """ADE20K palette that maps each class to RGB values."""
24
+ return [
25
+ [255, 0, 0],
26
+ [255, 94, 0],
27
+ [255, 187, 0],
28
+ [255, 228, 0],
29
+ [171, 242, 0],
30
+ [29, 219, 22],
31
+ [0, 216, 255],
32
+ [0, 84, 255],
33
+ [1, 0, 255],
34
+ [95, 0, 255],
35
+ [255, 0, 221],
36
+ [255, 0, 127],
37
+ [152, 0, 0],
38
+ [153, 112, 0],
39
+ [107, 153, 0],
40
+ [0, 51, 153],
41
+ [63, 0, 153],
42
+ [153, 0, 133]
43
+ ]
44
+
45
+
46
+ labels_list = []
47
+
48
+ with open(r"labels.txt", "r") as fp:
49
+ for line in fp:
50
+ labels_list.append(line[:-1])
51
+
52
+ colormap = np.asarray(ade_palette())
53
+
54
+
55
+ def label_to_color_image(label):
56
+ if label.ndim != 2:
57
+ raise ValueError("Expect 2-D input label")
58
+
59
+ if np.max(label) >= len(colormap):
60
+ raise ValueError("label value too large.")
61
+ return colormap[label]
62
+
63
+
64
+ def draw_plot(pred_img, seg):
65
+ fig = plt.figure(figsize=(20, 15))
66
+
67
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
68
+
69
+ plt.subplot(grid_spec[0])
70
+ plt.imshow(pred_img)
71
+ plt.axis("off")
72
+ LABEL_NAMES = np.asarray(labels_list)
73
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
74
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
75
+
76
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
77
+ ax = plt.subplot(grid_spec[1])
78
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
79
+ ax.yaxis.tick_right()
80
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
81
+ plt.xticks([], [])
82
+ ax.tick_params(width=0.0, labelsize=25)
83
+ return fig
84
+
85
+
86
+ def sepia(input_img):
87
+ input_img = Image.fromarray(input_img)
88
+
89
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
90
+ outputs = model(**inputs)
91
+ logits = outputs.logits
92
+
93
+ logits = tf.transpose(logits, [0, 2, 3, 1])
94
+ logits = tf.image.resize(
95
+ logits, input_img.size[::-1]
96
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
97
+ seg = tf.math.argmax(logits, axis=-1)[0]
98
+
99
+ color_seg = np.zeros(
100
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
101
+ ) # height, width, 3
102
+ for label, color in enumerate(colormap):
103
+ color_seg[seg.numpy() == label, :] = color
104
+
105
+ # Show image + mask
106
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
107
+ pred_img = pred_img.astype(np.uint8)
108
+
109
+ fig = draw_plot(pred_img, seg)
110
+ return fig
111
+
112
+
113
+ demo = gr.Interface(
114
+ fn=sepia,
115
+ inputs=gr.Image(shape=(400, 600)),
116
+ outputs=["plot"],
117
+ examples=[
118
+ "person-1.jpg","person-2.jpg","person-3.jpg","person-4.jpg", "person-5.jpg",],
119
+ allow_flagging="never",
120
+ )
121
+
122
+
123
+ demo.launch()