Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| import gc | |
| import math | |
| import os | |
| import torch | |
| import torchaudio | |
| import wandb | |
| from accelerate import Accelerator | |
| from accelerate.utils import DistributedDataParallelKwargs | |
| from ema_pytorch import EMA | |
| from torch.optim import AdamW | |
| from torch.optim.lr_scheduler import LinearLR, SequentialLR | |
| from torch.utils.data import DataLoader, Dataset, SequentialSampler | |
| from tqdm import tqdm | |
| from f5_tts.model import CFM | |
| from f5_tts.model.dataset import DynamicBatchSampler, collate_fn | |
| from f5_tts.model.utils import default, exists | |
| # trainer | |
| class Trainer: | |
| def __init__( | |
| self, | |
| model: CFM, | |
| epochs, | |
| learning_rate, | |
| num_warmup_updates=20000, | |
| save_per_updates=1000, | |
| keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints | |
| checkpoint_path=None, | |
| batch_size=32, | |
| batch_size_type: str = "sample", | |
| max_samples=32, | |
| grad_accumulation_steps=1, | |
| max_grad_norm=1.0, | |
| noise_scheduler: str | None = None, | |
| duration_predictor: torch.nn.Module | None = None, | |
| logger: str | None = "wandb", # "wandb" | "tensorboard" | None | |
| wandb_project="test_e2-tts", | |
| wandb_run_name="test_run", | |
| wandb_resume_id: str = None, | |
| log_samples: bool = False, | |
| last_per_updates=None, | |
| accelerate_kwargs: dict = dict(), | |
| ema_kwargs: dict = dict(), | |
| bnb_optimizer: bool = False, | |
| mel_spec_type: str = "vocos", # "vocos" | "bigvgan" | |
| is_local_vocoder: bool = False, # use local path vocoder | |
| local_vocoder_path: str = "", # local vocoder path | |
| ): | |
| ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| if logger == "wandb" and not wandb.api.api_key: | |
| logger = None | |
| self.log_samples = log_samples | |
| self.accelerator = Accelerator( | |
| log_with=logger if logger == "wandb" else None, | |
| kwargs_handlers=[ddp_kwargs], | |
| gradient_accumulation_steps=grad_accumulation_steps, | |
| **accelerate_kwargs, | |
| ) | |
| self.logger = logger | |
| if self.logger == "wandb": | |
| if exists(wandb_resume_id): | |
| init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}} | |
| else: | |
| init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}} | |
| self.accelerator.init_trackers( | |
| project_name=wandb_project, | |
| init_kwargs=init_kwargs, | |
| config={ | |
| "epochs": epochs, | |
| "learning_rate": learning_rate, | |
| "num_warmup_updates": num_warmup_updates, | |
| "batch_size": batch_size, | |
| "batch_size_type": batch_size_type, | |
| "max_samples": max_samples, | |
| "grad_accumulation_steps": grad_accumulation_steps, | |
| "max_grad_norm": max_grad_norm, | |
| "gpus": self.accelerator.num_processes, | |
| "noise_scheduler": noise_scheduler, | |
| }, | |
| ) | |
| elif self.logger == "tensorboard": | |
| from torch.utils.tensorboard import SummaryWriter | |
| self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}") | |
| self.model = model | |
| if self.is_main: | |
| self.ema_model = EMA(model, include_online_model=False, **ema_kwargs) | |
| self.ema_model.to(self.accelerator.device) | |
| print(f"Using logger: {logger}") | |
| if grad_accumulation_steps > 1: | |
| print( | |
| "Gradient accumulation checkpointing with per_updates now, old logic per_steps used with before f992c4e" | |
| ) | |
| self.epochs = epochs | |
| self.num_warmup_updates = num_warmup_updates | |
| self.save_per_updates = save_per_updates | |
| self.keep_last_n_checkpoints = keep_last_n_checkpoints | |
| self.last_per_updates = default(last_per_updates, save_per_updates) | |
| self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts") | |
| self.batch_size = batch_size | |
| self.batch_size_type = batch_size_type | |
| self.max_samples = max_samples | |
| self.grad_accumulation_steps = grad_accumulation_steps | |
| self.max_grad_norm = max_grad_norm | |
| # mel vocoder config | |
| self.vocoder_name = mel_spec_type | |
| self.is_local_vocoder = is_local_vocoder | |
| self.local_vocoder_path = local_vocoder_path | |
| self.noise_scheduler = noise_scheduler | |
| self.duration_predictor = duration_predictor | |
| if bnb_optimizer: | |
| import bitsandbytes as bnb | |
| self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate) | |
| else: | |
| self.optimizer = AdamW(model.parameters(), lr=learning_rate) | |
| self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer) | |
| def is_main(self): | |
| return self.accelerator.is_main_process | |
| def save_checkpoint(self, update, last=False): | |
| self.accelerator.wait_for_everyone() | |
| if self.is_main: | |
| checkpoint = dict( | |
| model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(), | |
| optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(), | |
| ema_model_state_dict=self.ema_model.state_dict(), | |
| scheduler_state_dict=self.scheduler.state_dict(), | |
| update=update, | |
| ) | |
| if not os.path.exists(self.checkpoint_path): | |
| os.makedirs(self.checkpoint_path) | |
| if last: | |
| self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") | |
| print(f"Saved last checkpoint at update {update}") | |
| else: | |
| if self.keep_last_n_checkpoints == 0: | |
| return | |
| self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{update}.pt") | |
| if self.keep_last_n_checkpoints > 0: | |
| # Updated logic to exclude pretrained model from rotation | |
| checkpoints = [ | |
| f | |
| for f in os.listdir(self.checkpoint_path) | |
| if f.startswith("model_") | |
| and not f.startswith("pretrained_") # Exclude pretrained models | |
| and f.endswith(".pt") | |
| and f != "model_last.pt" | |
| ] | |
| checkpoints.sort(key=lambda x: int(x.split("_")[1].split(".")[0])) | |
| while len(checkpoints) > self.keep_last_n_checkpoints: | |
| oldest_checkpoint = checkpoints.pop(0) | |
| os.remove(os.path.join(self.checkpoint_path, oldest_checkpoint)) | |
| print(f"Removed old checkpoint: {oldest_checkpoint}") | |
| def load_checkpoint(self): | |
| if ( | |
| not exists(self.checkpoint_path) | |
| or not os.path.exists(self.checkpoint_path) | |
| or not any(filename.endswith(".pt") for filename in os.listdir(self.checkpoint_path)) | |
| ): | |
| return 0 | |
| self.accelerator.wait_for_everyone() | |
| if "model_last.pt" in os.listdir(self.checkpoint_path): | |
| latest_checkpoint = "model_last.pt" | |
| else: | |
| # Updated to consider pretrained models for loading but prioritize training checkpoints | |
| all_checkpoints = [ | |
| f | |
| for f in os.listdir(self.checkpoint_path) | |
| if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith(".pt") | |
| ] | |
| # First try to find regular training checkpoints | |
| training_checkpoints = [f for f in all_checkpoints if f.startswith("model_") and f != "model_last.pt"] | |
| if training_checkpoints: | |
| latest_checkpoint = sorted( | |
| training_checkpoints, | |
| key=lambda x: int("".join(filter(str.isdigit, x))), | |
| )[-1] | |
| else: | |
| # If no training checkpoints, use pretrained model | |
| latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_")) | |
| # checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ | |
| checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu") | |
| # patch for backward compatibility, 305e3ea | |
| for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]: | |
| if key in checkpoint["ema_model_state_dict"]: | |
| del checkpoint["ema_model_state_dict"][key] | |
| if self.is_main: | |
| self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"]) | |
| if "update" in checkpoint or "step" in checkpoint: | |
| # patch for backward compatibility, with before f992c4e | |
| if "step" in checkpoint: | |
| checkpoint["update"] = checkpoint["step"] // self.grad_accumulation_steps | |
| if self.grad_accumulation_steps > 1 and self.is_main: | |
| print( | |
| "F5-TTS WARNING: Loading checkpoint saved with per_steps logic (before f992c4e), will convert to per_updates according to grad_accumulation_steps setting, may have unexpected behaviour." | |
| ) | |
| # patch for backward compatibility, 305e3ea | |
| for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]: | |
| if key in checkpoint["model_state_dict"]: | |
| del checkpoint["model_state_dict"][key] | |
| self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"]) | |
| self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"]) | |
| if self.scheduler: | |
| self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) | |
| update = checkpoint["update"] | |
| else: | |
| checkpoint["model_state_dict"] = { | |
| k.replace("ema_model.", ""): v | |
| for k, v in checkpoint["ema_model_state_dict"].items() | |
| if k not in ["initted", "update", "step"] | |
| } | |
| self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"]) | |
| update = 0 | |
| del checkpoint | |
| gc.collect() | |
| return update | |
| def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None): | |
| if self.log_samples: | |
| from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef | |
| vocoder = load_vocoder( | |
| vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path | |
| ) | |
| target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate | |
| log_samples_path = f"{self.checkpoint_path}/samples" | |
| os.makedirs(log_samples_path, exist_ok=True) | |
| if exists(resumable_with_seed): | |
| generator = torch.Generator() | |
| generator.manual_seed(resumable_with_seed) | |
| else: | |
| generator = None | |
| if self.batch_size_type == "sample": | |
| train_dataloader = DataLoader( | |
| train_dataset, | |
| collate_fn=collate_fn, | |
| num_workers=num_workers, | |
| pin_memory=True, | |
| persistent_workers=True, | |
| batch_size=self.batch_size, | |
| shuffle=True, | |
| generator=generator, | |
| ) | |
| elif self.batch_size_type == "frame": | |
| self.accelerator.even_batches = False | |
| sampler = SequentialSampler(train_dataset) | |
| batch_sampler = DynamicBatchSampler( | |
| sampler, | |
| self.batch_size, | |
| max_samples=self.max_samples, | |
| random_seed=resumable_with_seed, # This enables reproducible shuffling | |
| drop_last=False, | |
| ) | |
| train_dataloader = DataLoader( | |
| train_dataset, | |
| collate_fn=collate_fn, | |
| num_workers=num_workers, | |
| pin_memory=True, | |
| persistent_workers=True, | |
| batch_sampler=batch_sampler, | |
| ) | |
| else: | |
| raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}") | |
| # accelerator.prepare() dispatches batches to devices; | |
| # which means the length of dataloader calculated before, should consider the number of devices | |
| warmup_updates = ( | |
| self.num_warmup_updates * self.accelerator.num_processes | |
| ) # consider a fixed warmup steps while using accelerate multi-gpu ddp | |
| # otherwise by default with split_batches=False, warmup steps change with num_processes | |
| total_updates = math.ceil(len(train_dataloader) / self.grad_accumulation_steps) * self.epochs | |
| decay_updates = total_updates - warmup_updates | |
| warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_updates) | |
| decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_updates) | |
| self.scheduler = SequentialLR( | |
| self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_updates] | |
| ) | |
| train_dataloader, self.scheduler = self.accelerator.prepare( | |
| train_dataloader, self.scheduler | |
| ) # actual multi_gpu updates = single_gpu updates / gpu nums | |
| start_update = self.load_checkpoint() | |
| global_update = start_update | |
| if exists(resumable_with_seed): | |
| orig_epoch_step = len(train_dataloader) | |
| start_step = start_update * self.grad_accumulation_steps | |
| skipped_epoch = int(start_step // orig_epoch_step) | |
| skipped_batch = start_step % orig_epoch_step | |
| skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) | |
| else: | |
| skipped_epoch = 0 | |
| for epoch in range(skipped_epoch, self.epochs): | |
| self.model.train() | |
| if exists(resumable_with_seed) and epoch == skipped_epoch: | |
| progress_bar_initial = math.ceil(skipped_batch / self.grad_accumulation_steps) | |
| current_dataloader = skipped_dataloader | |
| else: | |
| progress_bar_initial = 0 | |
| current_dataloader = train_dataloader | |
| # Set epoch for the batch sampler if it exists | |
| if hasattr(train_dataloader, "batch_sampler") and hasattr(train_dataloader.batch_sampler, "set_epoch"): | |
| train_dataloader.batch_sampler.set_epoch(epoch) | |
| progress_bar = tqdm( | |
| range(math.ceil(len(train_dataloader) / self.grad_accumulation_steps)), | |
| desc=f"Epoch {epoch+1}/{self.epochs}", | |
| unit="update", | |
| disable=not self.accelerator.is_local_main_process, | |
| initial=progress_bar_initial, | |
| ) | |
| for batch in current_dataloader: | |
| with self.accelerator.accumulate(self.model): | |
| text_inputs = batch["text"] | |
| mel_spec = batch["mel"].permute(0, 2, 1) | |
| mel_lengths = batch["mel_lengths"] | |
| # TODO. add duration predictor training | |
| if self.duration_predictor is not None and self.accelerator.is_local_main_process: | |
| dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations")) | |
| self.accelerator.log({"duration loss": dur_loss.item()}, step=global_update) | |
| loss, cond, pred = self.model( | |
| mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler | |
| ) | |
| self.accelerator.backward(loss) | |
| if self.max_grad_norm > 0 and self.accelerator.sync_gradients: | |
| self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) | |
| self.optimizer.step() | |
| self.scheduler.step() | |
| self.optimizer.zero_grad() | |
| if self.accelerator.sync_gradients: | |
| if self.is_main: | |
| self.ema_model.update() | |
| global_update += 1 | |
| progress_bar.update(1) | |
| progress_bar.set_postfix(update=str(global_update), loss=loss.item()) | |
| if self.accelerator.is_local_main_process: | |
| self.accelerator.log( | |
| {"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_update | |
| ) | |
| if self.logger == "tensorboard": | |
| self.writer.add_scalar("loss", loss.item(), global_update) | |
| self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_update) | |
| if global_update % self.save_per_updates == 0 and self.accelerator.sync_gradients: | |
| self.save_checkpoint(global_update) | |
| if self.log_samples and self.accelerator.is_local_main_process: | |
| ref_audio_len = mel_lengths[0] | |
| infer_text = [ | |
| text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0] | |
| ] | |
| with torch.inference_mode(): | |
| generated, _ = self.accelerator.unwrap_model(self.model).sample( | |
| cond=mel_spec[0][:ref_audio_len].unsqueeze(0), | |
| text=infer_text, | |
| duration=ref_audio_len * 2, | |
| steps=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| ) | |
| generated = generated.to(torch.float32) | |
| gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device) | |
| ref_mel_spec = batch["mel"][0].unsqueeze(0) | |
| if self.vocoder_name == "vocos": | |
| gen_audio = vocoder.decode(gen_mel_spec).cpu() | |
| ref_audio = vocoder.decode(ref_mel_spec).cpu() | |
| elif self.vocoder_name == "bigvgan": | |
| gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu() | |
| ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu() | |
| torchaudio.save( | |
| f"{log_samples_path}/update_{global_update}_gen.wav", gen_audio, target_sample_rate | |
| ) | |
| torchaudio.save( | |
| f"{log_samples_path}/update_{global_update}_ref.wav", ref_audio, target_sample_rate | |
| ) | |
| if global_update % self.last_per_updates == 0 and self.accelerator.sync_gradients: | |
| self.save_checkpoint(global_update, last=True) | |
| self.save_checkpoint(global_update, last=True) | |
| self.accelerator.end_training() | |