File size: 3,938 Bytes
153a74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2ef10
153a74a
 
adf2556
5f2ef10
153a74a
 
 
 
 
 
 
 
 
 
 
 
5f2ef10
 
153a74a
 
 
 
 
 
 
701defd
2c4f229
153a74a
 
 
 
 
 
5f2ef10
153a74a
5f2ef10
153a74a
5e8f0ac
153a74a
 
 
 
493e475
153a74a
 
 
 
 
 
 
5f2ef10
153a74a
 
 
 
5f2ef10
36df638
5f2ef10
153a74a
 
 
5f2ef10
 
153a74a
5f2ef10
 
153a74a
 
5f2ef10
153a74a
 
 
cda3ab4
5f2ef10
5bd6cdf
0779337
5f2ef10
0779337
153a74a
 
 
 
 
5f2ef10
3b05550
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import spaces
import os
from huggingface_hub import login
import gradio as gr
from cached_path import cached_path
import tempfile
from vinorm import TTSnorm

from f5_tts.model import DiT
from f5_tts.infer.utils_infer import (
    preprocess_ref_audio_text,
    load_vocoder,
    load_model,
    infer_process,
    save_spectrogram,
)

# Retrieve token from secrets
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")


# Log in to Hugging Face
if hf_token:
    login(token=hf_token)

def post_process(text):
    text = " " + text + " "
    text = text.replace(" . . ", " . ")
    text = " " + text + " "
    text = text.replace(" .. ", " . ")
    text = " " + text + " "
    text = text.replace(" , , ", " , ")
    text = " " + text + " "
    text = text.replace(" ,, ", " , ")
    text = " " + text + " "
    text = text.replace('"', "")
    return " ".join(text.split())

# Load models
vocoder = load_vocoder()
model = load_model(
    DiT,
    dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
    ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/model_last.pt")),
    vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-ViVoice/config.json")),
)

@spaces.GPU
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None):

    if not ref_audio_orig:
        raise gr.Error("Please upload a sample audio file.")
    if not gen_text.strip():
        raise gr.Error("Please enter the text content to generate voice.")
    if len(gen_text.split()) > 1000:
        raise gr.Error("Please enter text content with less than 1000 words.")
    
    try:
        ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "")
        final_wave, final_sample_rate, spectrogram = infer_process(
            ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed
        )
        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
            spectrogram_path = tmp_spectrogram.name
            save_spectrogram(spectrogram, spectrogram_path)

        return (final_sample_rate, final_wave), spectrogram_path
    except Exception as e:
        raise gr.Error(f"Error generating voice: {e}")

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎀 F5-TTS: Vietnamese Text-to-Speech Synthesis.
    # The model was trained with approximately 1000 hours of data on a RTX 3090 GPU. 
    Enter text and upload a sample voice to generate natural speech.
    """)
    
    with gr.Row():
        ref_audio = gr.Audio(label="πŸ”Š Sample Voice", type="filepath")
        gen_text = gr.Textbox(label="πŸ“ Text", placeholder="Enter the text to generate voice...", lines=3)
    
    speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="⚑ Speed")
    btn_synthesize = gr.Button("πŸ”₯ Generate Voice")
    
    with gr.Row():
        output_audio = gr.Audio(label="🎧 Generated Audio", type="numpy")
        output_spectrogram = gr.Image(label="πŸ“Š Spectrogram")
    
    model_limitations = gr.Textbox(
        value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed.
2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality.
3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality.
4. Inference with overly long paragraphs may produce poor results.""", 
        label="❗ Model Limitations",
        lines=4,
        interactive=False
    )

    btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram])

# Run Gradio with share=True to get a gradio.live link
demo.queue().launch()