Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ def calculate_microstrip_patch(frequency, permittivity, thickness, tangent_loss)
|
|
| 16 |
effective_wavelength = wavelength / np.sqrt(permittivity)
|
| 17 |
patch_length = effective_wavelength / 2
|
| 18 |
patch_width = wavelength / (2 * np.sqrt(1 + permittivity))
|
| 19 |
-
return patch_length, patch_width, thickness
|
| 20 |
|
| 21 |
def calculate_dipole(frequency):
|
| 22 |
c = 3e8 # Speed of light in m/s
|
|
@@ -25,8 +25,7 @@ def calculate_dipole(frequency):
|
|
| 25 |
return dipole_length
|
| 26 |
|
| 27 |
def calculate_s11(frequency):
|
| 28 |
-
|
| 29 |
-
s11 = -20 + 5 * np.cos(2 * np.pi * frequency / 10)
|
| 30 |
return s11
|
| 31 |
|
| 32 |
def calculate_directivity_and_gain(frequency):
|
|
@@ -41,25 +40,11 @@ def radiation_pattern(theta, frequency):
|
|
| 41 |
# Graphing Functions
|
| 42 |
def plot_3d_microstrip_patch(patch_length, patch_width, thickness):
|
| 43 |
fig = go.Figure()
|
| 44 |
-
# Patch
|
| 45 |
fig.add_trace(go.Surface(
|
| 46 |
z=[[0, 0], [0, 0]], x=[[0, patch_width], [0, patch_width]],
|
| 47 |
y=[[0, 0], [patch_length, patch_length]], colorscale="Viridis", name="Patch"
|
| 48 |
))
|
| 49 |
-
|
| 50 |
-
fig.add_trace(go.Surface(
|
| 51 |
-
z=[[-thickness, -thickness], [-thickness, -thickness]],
|
| 52 |
-
x=[[0, patch_width], [0, patch_width]],
|
| 53 |
-
y=[[0, 0], [patch_length, patch_length]], colorscale="Blues", name="Substrate"
|
| 54 |
-
))
|
| 55 |
-
# Ground
|
| 56 |
-
fig.add_trace(go.Surface(
|
| 57 |
-
z=[[-thickness, -thickness], [-thickness, -thickness]],
|
| 58 |
-
x=[[0, patch_width], [0, patch_width]],
|
| 59 |
-
y=[[0, 0], [patch_length, patch_length]], colorscale="Greens", name="Ground"
|
| 60 |
-
))
|
| 61 |
-
fig.update_traces(showscale=False)
|
| 62 |
-
fig.update_layout(title="3D Microstrip Patch Antenna", showlegend=False)
|
| 63 |
return fig
|
| 64 |
|
| 65 |
def plot_s11_graph(frequencies, s11_values):
|
|
@@ -72,7 +57,7 @@ def plot_directivity_and_gain(frequencies, directivities, gains):
|
|
| 72 |
fig = go.Figure()
|
| 73 |
fig.add_trace(go.Scatter(x=frequencies, y=directivities, mode='lines', name="Directivity"))
|
| 74 |
fig.add_trace(go.Scatter(x=frequencies, y=gains, mode='lines', name="Realized Gain"))
|
| 75 |
-
fig.update_layout(title="Frequency vs. Directivity and
|
| 76 |
xaxis_title="Frequency (GHz)", yaxis_title="Gain (dBi)")
|
| 77 |
return fig
|
| 78 |
|
|
@@ -85,25 +70,26 @@ def plot_radiation_pattern(theta, gain_pattern):
|
|
| 85 |
# Main Function
|
| 86 |
def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_loss, impedance):
|
| 87 |
frequency_hz = frequency * 1e9
|
| 88 |
-
frequencies = np.linspace(frequency - 0.5, frequency + 0.5, 100)
|
| 89 |
-
|
| 90 |
if antenna_type == "Microstrip Patch":
|
| 91 |
-
patch_length, patch_width, thickness = calculate_microstrip_patch(
|
|
|
|
|
|
|
| 92 |
s11_values = [calculate_s11(f) for f in frequencies]
|
| 93 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
| 94 |
theta = np.linspace(-180, 180, 360)
|
| 95 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
directivity_gain_graph = plot_directivity_and_gain(frequencies, directivities, gains)
|
| 99 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
| 100 |
antenna_3d = plot_3d_microstrip_patch(patch_length, patch_width, thickness)
|
| 101 |
-
|
| 102 |
output = (
|
| 103 |
f"Design Type: Microstrip Patch Antenna\n"
|
| 104 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
| 105 |
-
f"
|
| 106 |
-
f"
|
| 107 |
f"Input Impedance: {impedance} Ohms"
|
| 108 |
)
|
| 109 |
elif antenna_type == "Dipole":
|
|
@@ -112,17 +98,15 @@ def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_los
|
|
| 112 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
| 113 |
theta = np.linspace(-180, 180, 360)
|
| 114 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
directivity_gain_graph = plot_directivity_and_gain(frequencies, directivities, gains)
|
| 118 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
| 119 |
-
antenna_3d = None #
|
| 120 |
-
|
| 121 |
output = (
|
| 122 |
f"Design Type: Dipole Antenna\n"
|
| 123 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
| 124 |
-
f"
|
| 125 |
-
f"Dipole Length: {dipole_length:.2f} m\n"
|
| 126 |
f"Input Impedance: {impedance} Ohms"
|
| 127 |
)
|
| 128 |
|
|
@@ -130,12 +114,12 @@ def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_los
|
|
| 130 |
|
| 131 |
# Gradio Interface
|
| 132 |
with gr.Blocks() as demo:
|
| 133 |
-
gr.Markdown("# Antenna Design Tool
|
| 134 |
antenna_type = gr.Dropdown(["Microstrip Patch", "Dipole"], label="Select Antenna Type")
|
| 135 |
frequency = gr.Slider(1.0, 10.0, step=0.1, label="Operating Frequency (GHz)")
|
| 136 |
permittivity = gr.Number(value=4.4, label="Substrate Permittivity")
|
| 137 |
thickness = gr.Number(value=0.01, label="Substrate Thickness (m)")
|
| 138 |
-
tangent_loss = gr.Number(value=0.02, label="
|
| 139 |
impedance = gr.Dropdown([50, 73], label="Input Impedance (Ohms)", value=50)
|
| 140 |
design_button = gr.Button("Design Antenna")
|
| 141 |
output_text = gr.Textbox(label="Design Results")
|
|
|
|
| 16 |
effective_wavelength = wavelength / np.sqrt(permittivity)
|
| 17 |
patch_length = effective_wavelength / 2
|
| 18 |
patch_width = wavelength / (2 * np.sqrt(1 + permittivity))
|
| 19 |
+
return patch_length, patch_width, thickness, tangent_loss
|
| 20 |
|
| 21 |
def calculate_dipole(frequency):
|
| 22 |
c = 3e8 # Speed of light in m/s
|
|
|
|
| 25 |
return dipole_length
|
| 26 |
|
| 27 |
def calculate_s11(frequency):
|
| 28 |
+
s11 = -20 + 5 * np.cos(2 * np.pi * frequency / 10) # Mock S11 values
|
|
|
|
| 29 |
return s11
|
| 30 |
|
| 31 |
def calculate_directivity_and_gain(frequency):
|
|
|
|
| 40 |
# Graphing Functions
|
| 41 |
def plot_3d_microstrip_patch(patch_length, patch_width, thickness):
|
| 42 |
fig = go.Figure()
|
|
|
|
| 43 |
fig.add_trace(go.Surface(
|
| 44 |
z=[[0, 0], [0, 0]], x=[[0, patch_width], [0, patch_width]],
|
| 45 |
y=[[0, 0], [patch_length, patch_length]], colorscale="Viridis", name="Patch"
|
| 46 |
))
|
| 47 |
+
fig.update_layout(title="3D Microstrip Patch Antenna")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
return fig
|
| 49 |
|
| 50 |
def plot_s11_graph(frequencies, s11_values):
|
|
|
|
| 57 |
fig = go.Figure()
|
| 58 |
fig.add_trace(go.Scatter(x=frequencies, y=directivities, mode='lines', name="Directivity"))
|
| 59 |
fig.add_trace(go.Scatter(x=frequencies, y=gains, mode='lines', name="Realized Gain"))
|
| 60 |
+
fig.update_layout(title="Frequency vs. Directivity and Gain",
|
| 61 |
xaxis_title="Frequency (GHz)", yaxis_title="Gain (dBi)")
|
| 62 |
return fig
|
| 63 |
|
|
|
|
| 70 |
# Main Function
|
| 71 |
def design_antenna(antenna_type, frequency, permittivity, thickness, tangent_loss, impedance):
|
| 72 |
frequency_hz = frequency * 1e9
|
| 73 |
+
frequencies = np.linspace(frequency - 0.5, frequency + 0.5, 100) * 1e9 # Adjust to Hz
|
| 74 |
+
|
| 75 |
if antenna_type == "Microstrip Patch":
|
| 76 |
+
patch_length, patch_width, thickness, tangent_loss = calculate_microstrip_patch(
|
| 77 |
+
frequency_hz, permittivity, thickness, tangent_loss
|
| 78 |
+
)
|
| 79 |
s11_values = [calculate_s11(f) for f in frequencies]
|
| 80 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
| 81 |
theta = np.linspace(-180, 180, 360)
|
| 82 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
| 83 |
+
s11_graph = plot_s11_graph(frequencies / 1e9, s11_values) # Convert to GHz
|
| 84 |
+
directivity_gain_graph = plot_directivity_and_gain(frequencies / 1e9, directivities, gains)
|
|
|
|
| 85 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
| 86 |
antenna_3d = plot_3d_microstrip_patch(patch_length, patch_width, thickness)
|
| 87 |
+
|
| 88 |
output = (
|
| 89 |
f"Design Type: Microstrip Patch Antenna\n"
|
| 90 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
| 91 |
+
f"Patch Dimensions: {patch_length:.3f} m x {patch_width:.3f} m x {thickness:.3f} m\n"
|
| 92 |
+
f"Tangent Loss: {tangent_loss}\n"
|
| 93 |
f"Input Impedance: {impedance} Ohms"
|
| 94 |
)
|
| 95 |
elif antenna_type == "Dipole":
|
|
|
|
| 98 |
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
| 99 |
theta = np.linspace(-180, 180, 360)
|
| 100 |
gain_pattern = radiation_pattern(theta, frequency_hz)
|
| 101 |
+
s11_graph = plot_s11_graph(frequencies / 1e9, s11_values) # Convert to GHz
|
| 102 |
+
directivity_gain_graph = plot_directivity_and_gain(frequencies / 1e9, directivities, gains)
|
|
|
|
| 103 |
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
| 104 |
+
antenna_3d = None # No 3D visualization for dipole
|
| 105 |
+
|
| 106 |
output = (
|
| 107 |
f"Design Type: Dipole Antenna\n"
|
| 108 |
f"Operating Frequency: {frequency:.2f} GHz\n"
|
| 109 |
+
f"Dipole Length: {dipole_length:.3f} m\n"
|
|
|
|
| 110 |
f"Input Impedance: {impedance} Ohms"
|
| 111 |
)
|
| 112 |
|
|
|
|
| 114 |
|
| 115 |
# Gradio Interface
|
| 116 |
with gr.Blocks() as demo:
|
| 117 |
+
gr.Markdown("# Antenna Design Tool")
|
| 118 |
antenna_type = gr.Dropdown(["Microstrip Patch", "Dipole"], label="Select Antenna Type")
|
| 119 |
frequency = gr.Slider(1.0, 10.0, step=0.1, label="Operating Frequency (GHz)")
|
| 120 |
permittivity = gr.Number(value=4.4, label="Substrate Permittivity")
|
| 121 |
thickness = gr.Number(value=0.01, label="Substrate Thickness (m)")
|
| 122 |
+
tangent_loss = gr.Number(value=0.02, label="Tangent Loss (tan δ)", step=0.01)
|
| 123 |
impedance = gr.Dropdown([50, 73], label="Input Impedance (Ohms)", value=50)
|
| 124 |
design_button = gr.Button("Design Antenna")
|
| 125 |
output_text = gr.Textbox(label="Design Results")
|