Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from groq import Groq
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
|
| 8 |
+
# Load API Key
|
| 9 |
+
load_dotenv()
|
| 10 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 11 |
+
|
| 12 |
+
# Functions for Antenna Calculations
|
| 13 |
+
def calculate_microstrip_patch(frequency, permittivity, thickness):
|
| 14 |
+
c = 3e8 # Speed of light in m/s
|
| 15 |
+
wavelength = c / frequency
|
| 16 |
+
effective_wavelength = wavelength / np.sqrt(permittivity)
|
| 17 |
+
patch_length = effective_wavelength / 2
|
| 18 |
+
patch_width = wavelength / (2 * np.sqrt(1 + permittivity))
|
| 19 |
+
return patch_length, patch_width, thickness
|
| 20 |
+
|
| 21 |
+
def calculate_s11(frequency):
|
| 22 |
+
# Simulate S11 (just an example function for demonstration)
|
| 23 |
+
s11 = -20 + 5 * np.cos(2 * np.pi * frequency / 10)
|
| 24 |
+
return s11
|
| 25 |
+
|
| 26 |
+
def calculate_directivity_and_gain(frequency):
|
| 27 |
+
directivity = 6.0 + 0.5 * np.log10(frequency) # Approximation
|
| 28 |
+
realized_gain = directivity - 1.5 # Efficiency loss
|
| 29 |
+
return directivity, realized_gain
|
| 30 |
+
|
| 31 |
+
def radiation_pattern(theta, frequency):
|
| 32 |
+
gain = 10 * np.log10(np.abs(np.sin(np.radians(theta))) + 1e-9)
|
| 33 |
+
return gain
|
| 34 |
+
|
| 35 |
+
# Graphing Functions
|
| 36 |
+
def plot_3d_microstrip_patch(patch_length, patch_width, thickness):
|
| 37 |
+
fig = go.Figure()
|
| 38 |
+
# Patch
|
| 39 |
+
fig.add_trace(go.Surface(
|
| 40 |
+
z=[[0, 0], [0, 0]], x=[[0, patch_width], [0, patch_width]],
|
| 41 |
+
y=[[0, 0], [patch_length, patch_length]], colorscale="Viridis", name="Patch"
|
| 42 |
+
))
|
| 43 |
+
# Substrate
|
| 44 |
+
fig.add_trace(go.Surface(
|
| 45 |
+
z=[[-thickness, -thickness], [-thickness, -thickness]],
|
| 46 |
+
x=[[0, patch_width], [0, patch_width]],
|
| 47 |
+
y=[[0, 0], [patch_length, patch_length]], colorscale="Blues", name="Substrate"
|
| 48 |
+
))
|
| 49 |
+
# Ground
|
| 50 |
+
fig.add_trace(go.Surface(
|
| 51 |
+
z=[[-thickness, -thickness], [-thickness, -thickness]],
|
| 52 |
+
x=[[0, patch_width], [0, patch_width]],
|
| 53 |
+
y=[[0, 0], [patch_length, patch_length]], colorscale="Greens", name="Ground"
|
| 54 |
+
))
|
| 55 |
+
fig.update_traces(showscale=False)
|
| 56 |
+
fig.update_layout(title="3D Microstrip Patch Antenna", showlegend=False)
|
| 57 |
+
return fig
|
| 58 |
+
|
| 59 |
+
def plot_s11_graph(frequencies, s11_values):
|
| 60 |
+
fig = go.Figure()
|
| 61 |
+
fig.add_trace(go.Scatter(x=frequencies, y=s11_values, mode='lines', name="S11"))
|
| 62 |
+
fig.update_layout(title="Frequency vs. S11", xaxis_title="Frequency (GHz)", yaxis_title="S11 (dB)")
|
| 63 |
+
return fig
|
| 64 |
+
|
| 65 |
+
def plot_directivity_and_gain(frequencies, directivities, gains):
|
| 66 |
+
fig = go.Figure()
|
| 67 |
+
fig.add_trace(go.Scatter(x=frequencies, y=directivities, mode='lines', name="Directivity"))
|
| 68 |
+
fig.add_trace(go.Scatter(x=frequencies, y=gains, mode='lines', name="Realized Gain"))
|
| 69 |
+
fig.update_layout(title="Frequency vs. Directivity and Realized Gain",
|
| 70 |
+
xaxis_title="Frequency (GHz)", yaxis_title="Gain (dBi)")
|
| 71 |
+
return fig
|
| 72 |
+
|
| 73 |
+
def plot_radiation_pattern(theta, gain_pattern):
|
| 74 |
+
fig = go.Figure()
|
| 75 |
+
fig.add_trace(go.Scatter(x=theta, y=gain_pattern, mode='lines', name="Radiation Pattern"))
|
| 76 |
+
fig.update_layout(title="Radiation Pattern", xaxis_title="Degrees", yaxis_title="Gain (dBi)")
|
| 77 |
+
return fig
|
| 78 |
+
|
| 79 |
+
# Main Function
|
| 80 |
+
def design_antenna(antenna_type, frequency, permittivity, thickness):
|
| 81 |
+
frequency_hz = frequency * 1e9
|
| 82 |
+
frequencies = np.linspace(frequency - 0.5, frequency + 0.5, 100)
|
| 83 |
+
|
| 84 |
+
if antenna_type == "Microstrip Patch":
|
| 85 |
+
patch_length, patch_width, thickness = calculate_microstrip_patch(frequency_hz, permittivity, thickness)
|
| 86 |
+
s11_values = [calculate_s11(f) for f in frequencies]
|
| 87 |
+
directivities, gains = zip(*[calculate_directivity_and_gain(f) for f in frequencies])
|
| 88 |
+
theta = np.linspace(-180, 180, 360)
|
| 89 |
+
gain_pattern = radiation_pattern(theta, frequency_hz)
|
| 90 |
+
|
| 91 |
+
s11_graph = plot_s11_graph(frequencies, s11_values)
|
| 92 |
+
directivity_gain_graph = plot_directivity_and_gain(frequencies, directivities, gains)
|
| 93 |
+
radiation_graph = plot_radiation_pattern(theta, gain_pattern)
|
| 94 |
+
antenna_3d = plot_3d_microstrip_patch(patch_length, patch_width, thickness)
|
| 95 |
+
|
| 96 |
+
output = (
|
| 97 |
+
f"Design Type: Microstrip Patch Antenna\n"
|
| 98 |
+
f"Operating Frequency: {frequency:.2f} GHz\n"
|
| 99 |
+
f"S11 at Operating Frequency: {s11_values[len(s11_values)//2]:.2f} dB\n"
|
| 100 |
+
f"Patch Dimensions: {patch_length:.2f} m x {patch_width:.2f} m x {thickness:.2f} m\n"
|
| 101 |
+
)
|
| 102 |
+
else:
|
| 103 |
+
output = "Currently, only Microstrip Patch Antenna is supported."
|
| 104 |
+
s11_graph, directivity_gain_graph, radiation_graph, antenna_3d = None, None, None, None
|
| 105 |
+
|
| 106 |
+
return output, s11_graph, directivity_gain_graph, radiation_graph, antenna_3d
|
| 107 |
+
|
| 108 |
+
# Gradio Interface
|
| 109 |
+
with gr.Blocks() as demo:
|
| 110 |
+
gr.Markdown("# Antenna Design Tool with Groq API")
|
| 111 |
+
antenna_type = gr.Dropdown(["Microstrip Patch"], label="Select Antenna Type")
|
| 112 |
+
frequency = gr.Slider(1.0, 10.0, step=0.1, label="Operating Frequency (GHz)")
|
| 113 |
+
permittivity = gr.Number(value=4.4, label="Substrate Permittivity")
|
| 114 |
+
thickness = gr.Number(value=0.01, label="Substrate Thickness (m)")
|
| 115 |
+
design_button = gr.Button("Design Antenna")
|
| 116 |
+
output_text = gr.Textbox(label="Design Results")
|
| 117 |
+
s11_plot = gr.Plot(label="S11 Plot")
|
| 118 |
+
directivity_gain_plot = gr.Plot(label="Directivity and Gain Plot")
|
| 119 |
+
radiation_pattern_plot = gr.Plot(label="Radiation Pattern")
|
| 120 |
+
antenna_3d_display = gr.Plot(label="3D Antenna Visualization")
|
| 121 |
+
|
| 122 |
+
design_button.click(
|
| 123 |
+
design_antenna,
|
| 124 |
+
inputs=[antenna_type, frequency, permittivity, thickness],
|
| 125 |
+
outputs=[output_text, s11_plot, directivity_gain_plot, radiation_pattern_plot, antenna_3d_display]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
demo.launch()
|