File size: 15,505 Bytes
c1c3428
 
 
 
 
58cd766
 
c1c3428
 
 
 
 
 
 
 
 
 
 
 
 
58cd766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb4702
 
c1c3428
 
 
1a478b6
c1c3428
 
1a478b6
2cb4702
1a478b6
c1c3428
 
 
 
2cb4702
c1c3428
 
 
 
 
 
 
 
2cb4702
c97afb4
c1c3428
 
 
 
 
 
2cb4702
c1c3428
 
 
 
 
c97afb4
c1c3428
 
 
 
7f48d64
 
58cd766
 
91a1f6b
58cd766
 
 
 
 
 
 
86fa68f
58cd766
 
 
 
86fa68f
58cd766
cbbb4ac
58cd766
 
86fa68f
 
 
 
 
 
 
 
 
58cd766
 
86fa68f
 
 
 
 
 
 
 
 
58cd766
 
86fa68f
58cd766
91a1f6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58cd766
86fa68f
c1c3428
 
 
 
 
 
 
 
 
2cb4702
c1c3428
 
 
 
 
c97afb4
c1c3428
 
 
c97afb4
c1c3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb4702
c1c3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58cd766
c1c3428
 
 
58cd766
c1c3428
58cd766
 
 
 
 
 
 
 
 
c1c3428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e19529
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from io import BytesIO
from scipy.signal import savgol_filter
from scipy.ndimage import gaussian_filter1d

# Function to save and download images with specified DPI
def download_button(fig, file_name, file_format, dpi):
    buffer = BytesIO()
    fig.savefig(buffer, format=file_format.lower(), dpi=dpi, bbox_inches="tight")
    buffer.seek(0)
    st.download_button(
        label=f"Download as {file_format.upper()} ({dpi} DPI)",
        data=buffer,
        file_name=f"{file_name}_{dpi}dpi.{file_format.lower()}",
        mime=f"image/{file_format.lower()}",
    )

# Function to apply smoothing
def apply_smoothing(data, method, **params):
    if method == "None":
        return data
    elif method == "Moving Average":
        window = params.get('window_size', 5)
        return pd.Series(data).rolling(window=window, center=True).mean()
    elif method == "Gaussian":
        sigma = params.get('sigma', 2)
        return gaussian_filter1d(data, sigma=sigma)
    elif method == "Savitzky-Golay":
        window = params.get('window_size', 5)
        poly_order = params.get('poly_order', 2)
        return savgol_filter(data, window_length=window, polyorder=poly_order)
    return data

# Title of the app
st.set_page_config(layout="wide")  # Use wide layout
st.title("Advanced CSV Data Visualization App")

# File uploader
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")

if uploaded_file is not None:
    try:
        # Read the CSV file
        df = pd.read_csv(uploaded_file)

        # Function to clean non-numeric values and convert to float
        def clean_column(column):
            return pd.to_numeric(column.str.replace(r"[^\d.-]", "", regex=True), errors='coerce')

        # Clean all columns to handle non-numeric data
        df = df.apply(lambda col: clean_column(col) if col.dtype == "object" else col)

        # Sidebar with settings
        with st.sidebar:
            st.subheader("Graph Settings")
            col1, col2 = st.columns(2)

            with col1:
                # X-Axis Settings
                x_column = st.selectbox("X-axis Column:", options=df.columns)
                x_label = st.text_input("X-axis Label:", value="Frequency")
                x_unit = st.text_input("X-axis Unit (e.g., Hz, MHz):", value="GHz")
                scale_option = st.selectbox("X Scaling Option:", 
                                            ["None", "Hz β†’ MHz", "Hz β†’ GHz", "mm β†’ cm", "mm β†’ m", 
                                             "cm β†’ mm", "m β†’ mm", "Frequency β†’ Wavelength", "Wavelength β†’ Frequency", 
                                             "Linear β†’ dB", "dB β†’ Linear"], index=2)
                x_min = st.number_input("Lower X-axis Limit:", value=None, format="%f")
                x_max = st.number_input("Upper X-axis Limit:", value=None, format="%f")
                x_step = st.number_input("X-axis Step Size:", value=5.0, format="%f")
                x_font_size = st.slider("X-axis Font Size:", 8, 20, 14)
                x_tick_position = st.selectbox("X-axis Tick Position:", ["out", "in", "inout"], index=2)

            with col2:
                # Y-Axis Settings
                y_columns = st.multiselect("Y-axis Column(s):", options=df.columns)
                y_label = st.text_input("Y-axis Label:", value="S21")
                y_unit = st.text_input("Y-axis Unit (e.g., dB, Linear):", value="dB")
                y_scale_option = st.selectbox("Y Scaling Option:", 
                                              ["None", "Hz β†’ MHz", "Hz β†’ GHz", "mm β†’ cm", "mm β†’ m", 
                                               "cm β†’ mm", "m β†’ mm", "Frequency β†’ Wavelength", "Wavelength β†’ Frequency", 
                                               "Linear β†’ dB", "dB β†’ Linear"], index=0)
                y_min = st.number_input("Lower Y-axis Limit:", value=None, format="%f")
                y_max = st.number_input("Upper Y-axis Limit:", value=None, format="%f")
                y_step = st.number_input("Y-axis Step Size:", value=10.0, format="%f")
                y_font_size = st.slider("Y-axis Font Size:", 8, 20, 14)
                y_tick_position = st.selectbox("Y-axis Tick Position:", ["out", "in", "inout"], index=2)

            # Title and Font Style Settings
            st.subheader("Title and Font Settings")
            title = st.text_input("Graph Title:", value="Advanced Graph")
            font_style = st.selectbox("Font Style:", ["Normal", "Italic", "Bold"], index=0).lower()
            font_theme = st.selectbox("Font Theme:", ["Times New Roman", "Arial", "Courier New", "Helvetica", "Verdana"], index=0)
            title_font_size = st.slider("Title Font Size:", 10, 30, 16)

            # Grid Settings
            st.subheader("Grid Settings")
            show_grid = st.checkbox("Show Grid", value=True)
            show_minor_grid = st.checkbox("Show Sub-grid (Minor Grid)", value=False)
            grid_direction = st.selectbox("Grid Direction:", ["x", "y", "both"], index=2)
            grid_line_style = st.selectbox("Grid Line Style:", ["-", "--", "-.", ":", "None"], index=0)
            grid_color = st.color_picker("Grid Line Color:", "#DDDDDD")
            grid_line_width = st.slider("Grid Line Width:", 0.5, 2.5, 1.0)

            # Enhanced Smoothing Settings
            st.subheader("Advanced Smoothing Settings")
            smoothing_method = st.selectbox(
                "Smoothing Method:",
                ["None", "Moving Average", "Gaussian", "Savitzky-Golay", "Median", "Combined", "Exponential Moving Average", "LOWESS", "Butterworth", "Fourier Transform"]
            )
            
            # Smoothing parameters based on selected method
            smoothing_params = {}
            if smoothing_method == "Moving Average":
                smoothing_params['window_size'] = st.slider(
                    "Window Size:",
                    3, 101, 5, step=2
                )
            elif smoothing_method == "Gaussian":
                smoothing_params['sigma'] = st.slider(
                    "Sigma (Blur Amount):",
                    0.1, 10.0, 2.0, step=0.1
                )
            elif smoothing_method == "Savitzky-Golay":
                smoothing_params['window_size'] = st.slider(
                    "Window Size:",
                    5, 101, 21, step=2
                )
                smoothing_params['poly_order'] = st.slider(
                    "Polynomial Order:",
                    1, 5, 3
                )
            elif smoothing_method == "Median":
                smoothing_params['kernel_size'] = st.slider(
                    "Kernel Size:",
                    3, 51, 5, step=2
                )
            elif smoothing_method == "Combined":
                smoothing_params['kernel_size'] = st.slider(
                    "Median Kernel Size:",
                    3, 51, 5, step=2
                )
                smoothing_params['window_size'] = st.slider(
                    "Savitzky-Golay Window:",
                    5, 101, 21, step=2
                )
                smoothing_params['poly_order'] = st.slider(
                    "Polynomial Order:",
                    1, 5, 3
                )
            elif smoothing_method == "Exponential Moving Average":
                smoothing_params['span'] = st.slider(
                    "Span (Smoothing Factor):",
                    1, 50, 10
                )
            elif smoothing_method == "LOWESS":
                smoothing_params['frac'] = st.slider(
                    "Fraction (Smoothing Proportion):",
                    0.01, 0.5, 0.1, step=0.01
                )
            elif smoothing_method == "Butterworth":
                smoothing_params['order'] = st.slider(
                    "Filter Order:",
                    1, 10, 3
                )
                smoothing_params['cutoff'] = st.slider(
                    "Cutoff Frequency:",
                    0.01, 0.5, 0.05, step=0.01
                )
            elif smoothing_method == "Fourier Transform":
                smoothing_params['keep_fraction'] = st.slider(
                    "Keep Fraction of Frequencies:",
                    0.01, 1.0, 0.1, step=0.01
                )


            # Vertical Marker Settings
            st.subheader("Vertical Marker Settings")
            marker_x_values = st.text_input("Enter X-axis Values for Markers (comma-separated):", value="")

            # DPI Setting
            dpi = st.selectbox("Select DPI for Download:", [100, 200, 300, 600], index=2)

            # Legend Customization
            st.subheader("Legend Customization")
            legend_font_size = st.slider("Font Size:", 8, 20, 10)
            legend_font_weight = st.selectbox("Font Weight:", ["Normal", "Bold"], index=0)
            legend_bg_color = st.color_picker("Background Color:", "#FFFFFF")
            legend_border_color = st.color_picker("Border Color:", "#000000")
            legend_border_width = st.slider("Border Width:", 0.5, 2.0, 1.0)
            legend_transparency = st.slider("Transparency (0 = fully opaque, 1 = fully transparent):", 0.0, 1.0, 0.5)
            legend_title = st.text_input("Legend Title:", value="")
            legend_location = st.selectbox("Legend Location:", 
                                           ["upper right", "upper center", "upper left", "center right", 
                                            "center", "center left", "lower right", 
                                            "lower center", "lower left"], index=1)
            legend_columns = st.selectbox("Legend Columns:", [1, 2, 3], index=1)

            # Line Style Settings
            st.subheader("Line Style Settings")
            style_settings = {}
            line_styles = {
                "Solid": "-", "Dashed": "--", "Dash-Dot": "-.", "Dotted": ":"
            }
            marker_styles = {
                "None": "", "Circle": "o", "Square": "s", "Star": "*", "Diamond": "D", "Triangle": "^", 
                "Pentagon": "p", "Hexagon": "H", "Plus": "+", "X": "x"
            }
            for y_column in y_columns:
                with st.expander(f"Line Style for '{y_column}'", expanded=False):
                    color = st.color_picker(f"Color for '{y_column}':", "#1f77b4", key=f"color_{y_column}")
                    line_style = st.selectbox("Line Style:", list(line_styles.keys()), key=f"ls_{y_column}")
                    marker_style = st.selectbox("Marker Style:", list(marker_styles.keys()), key=f"ms_{y_column}")
                    line_width = st.slider("Line Width:", 0.5, 5.0, 2.0, key=f"lw_{y_column}")
                    style_settings[y_column] = {
                        "color": color,
                        "line_style": line_styles[line_style],
                        "marker_style": marker_styles[marker_style],
                        "line_width": line_width,
                    }

        # Graph Output Section
        st.subheader("Graph Output")
        if st.button("Generate Graph"):
            fig, ax = plt.subplots()

            # Scaling for both X and Y axes (same options for both axes)
            def apply_scaling(df, column, scale_option, unit):
                if scale_option == "Hz β†’ MHz":
                    df[column] = df[column] / 1e6
                    unit = "MHz"
                elif scale_option == "Hz β†’ GHz":
                    df[column] = df[column] / 1e9
                    unit = "GHz"
                elif scale_option == "mm β†’ cm":
                    df[column] = df[column] / 10
                    unit = "cm"
                elif scale_option == "mm β†’ m":
                    df[column] = df[column] / 1000
                    unit = "m"
                elif scale_option == "cm β†’ mm":
                    df[column] = df[column] * 10
                    unit = "mm"
                elif scale_option == "m β†’ mm":
                    df[column] = df[column] * 1000
                    unit = "mm"
                elif scale_option == "Frequency β†’ Wavelength":
                    df[column] = 3e8 / df[column]
                    unit = "Wavelength (m)"
                elif scale_option == "Wavelength β†’ Frequency":
                    df[column] = 3e8 / df[column]
                    unit = "Frequency (Hz)"
                elif scale_option == "Linear β†’ dB":
                    df[column] = 10 * np.log10(df[column])
                    unit = "dB"
                elif scale_option == "dB β†’ Linear":
                    df[column] = 10**(df[column] / 10)
                    unit = "Linear"
                return df, unit

            # Apply scaling for X-axis
            df, x_unit = apply_scaling(df, x_column, scale_option, x_unit)

            # Apply scaling for Y-axis
            for col in y_columns:
                df, y_unit = apply_scaling(df, col, y_scale_option, y_unit)

            # Plot data with smoothing
            for col in y_columns:
                # Apply smoothing to the y-values
                y_values = apply_smoothing(df[col].values, smoothing_method, **smoothing_params)
                
                ax.plot(df[x_column], y_values,
                       label=col,
                       linestyle=style_settings[col]["line_style"],
                       marker=style_settings[col]["marker_style"],
                       color=style_settings[col]["color"],
                       linewidth=style_settings[col]["line_width"])

            # Axis limits and step size
            if x_min and x_max:
                ax.set_xticks(np.arange(x_min, x_max + x_step, x_step))
            if y_min and y_max:
                ax.set_yticks(np.arange(y_min, y_max + y_step, y_step))

            ax.set_xlim(x_min, x_max)
            ax.set_ylim(y_min, y_max)

            # Labels, title, and grid
            ax.set_xlabel(f"{x_label} ({x_unit})", fontsize=x_font_size)
            ax.set_ylabel(f"{y_label} ({y_unit})", fontsize=y_font_size)
            ax.set_title(title, fontsize=title_font_size, fontstyle=font_style, family=font_theme)
            ax.tick_params(axis='x', direction=x_tick_position)
            ax.tick_params(axis='y', direction=y_tick_position)

            if show_grid:
                ax.grid(True, linestyle=grid_line_style, linewidth=grid_line_width, color=grid_color, axis=grid_direction)
            if show_minor_grid:
                ax.minorticks_on()
                ax.grid(which='minor', linestyle=grid_line_style, linewidth=grid_line_width, color=grid_color)

            # Vertical markers
            if marker_x_values:
                x_vals = [float(val.strip()) for val in marker_x_values.split(",")]
                for val in x_vals:
                    ax.axvline(x=val, color="r", linestyle="--", linewidth=1.5)

            # Legend
            ax.legend(title=legend_title, fontsize=legend_font_size, title_fontsize=legend_font_size,
                      loc=legend_location, frameon=True, facecolor=legend_bg_color, edgecolor=legend_border_color,
                      framealpha=legend_transparency, borderpad=legend_border_width, ncol=legend_columns)

            # Show graph
            st.pyplot(fig)

            # Download button
            download_button(fig, "graph", "PNG", dpi)

    except Exception as e:
        st.error(f"Error: {str(e)}")