File size: 15,505 Bytes
c1c3428 58cd766 c1c3428 58cd766 c1c3428 2cb4702 c1c3428 1a478b6 c1c3428 1a478b6 2cb4702 1a478b6 c1c3428 2cb4702 c1c3428 2cb4702 c97afb4 c1c3428 2cb4702 c1c3428 c97afb4 c1c3428 7f48d64 58cd766 91a1f6b 58cd766 86fa68f 58cd766 86fa68f 58cd766 cbbb4ac 58cd766 86fa68f 58cd766 86fa68f 58cd766 86fa68f 58cd766 91a1f6b 58cd766 86fa68f c1c3428 2cb4702 c1c3428 c97afb4 c1c3428 c97afb4 c1c3428 2cb4702 c1c3428 58cd766 c1c3428 58cd766 c1c3428 58cd766 c1c3428 0e19529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from io import BytesIO
from scipy.signal import savgol_filter
from scipy.ndimage import gaussian_filter1d
# Function to save and download images with specified DPI
def download_button(fig, file_name, file_format, dpi):
buffer = BytesIO()
fig.savefig(buffer, format=file_format.lower(), dpi=dpi, bbox_inches="tight")
buffer.seek(0)
st.download_button(
label=f"Download as {file_format.upper()} ({dpi} DPI)",
data=buffer,
file_name=f"{file_name}_{dpi}dpi.{file_format.lower()}",
mime=f"image/{file_format.lower()}",
)
# Function to apply smoothing
def apply_smoothing(data, method, **params):
if method == "None":
return data
elif method == "Moving Average":
window = params.get('window_size', 5)
return pd.Series(data).rolling(window=window, center=True).mean()
elif method == "Gaussian":
sigma = params.get('sigma', 2)
return gaussian_filter1d(data, sigma=sigma)
elif method == "Savitzky-Golay":
window = params.get('window_size', 5)
poly_order = params.get('poly_order', 2)
return savgol_filter(data, window_length=window, polyorder=poly_order)
return data
# Title of the app
st.set_page_config(layout="wide") # Use wide layout
st.title("Advanced CSV Data Visualization App")
# File uploader
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
if uploaded_file is not None:
try:
# Read the CSV file
df = pd.read_csv(uploaded_file)
# Function to clean non-numeric values and convert to float
def clean_column(column):
return pd.to_numeric(column.str.replace(r"[^\d.-]", "", regex=True), errors='coerce')
# Clean all columns to handle non-numeric data
df = df.apply(lambda col: clean_column(col) if col.dtype == "object" else col)
# Sidebar with settings
with st.sidebar:
st.subheader("Graph Settings")
col1, col2 = st.columns(2)
with col1:
# X-Axis Settings
x_column = st.selectbox("X-axis Column:", options=df.columns)
x_label = st.text_input("X-axis Label:", value="Frequency")
x_unit = st.text_input("X-axis Unit (e.g., Hz, MHz):", value="GHz")
scale_option = st.selectbox("X Scaling Option:",
["None", "Hz β MHz", "Hz β GHz", "mm β cm", "mm β m",
"cm β mm", "m β mm", "Frequency β Wavelength", "Wavelength β Frequency",
"Linear β dB", "dB β Linear"], index=2)
x_min = st.number_input("Lower X-axis Limit:", value=None, format="%f")
x_max = st.number_input("Upper X-axis Limit:", value=None, format="%f")
x_step = st.number_input("X-axis Step Size:", value=5.0, format="%f")
x_font_size = st.slider("X-axis Font Size:", 8, 20, 14)
x_tick_position = st.selectbox("X-axis Tick Position:", ["out", "in", "inout"], index=2)
with col2:
# Y-Axis Settings
y_columns = st.multiselect("Y-axis Column(s):", options=df.columns)
y_label = st.text_input("Y-axis Label:", value="S21")
y_unit = st.text_input("Y-axis Unit (e.g., dB, Linear):", value="dB")
y_scale_option = st.selectbox("Y Scaling Option:",
["None", "Hz β MHz", "Hz β GHz", "mm β cm", "mm β m",
"cm β mm", "m β mm", "Frequency β Wavelength", "Wavelength β Frequency",
"Linear β dB", "dB β Linear"], index=0)
y_min = st.number_input("Lower Y-axis Limit:", value=None, format="%f")
y_max = st.number_input("Upper Y-axis Limit:", value=None, format="%f")
y_step = st.number_input("Y-axis Step Size:", value=10.0, format="%f")
y_font_size = st.slider("Y-axis Font Size:", 8, 20, 14)
y_tick_position = st.selectbox("Y-axis Tick Position:", ["out", "in", "inout"], index=2)
# Title and Font Style Settings
st.subheader("Title and Font Settings")
title = st.text_input("Graph Title:", value="Advanced Graph")
font_style = st.selectbox("Font Style:", ["Normal", "Italic", "Bold"], index=0).lower()
font_theme = st.selectbox("Font Theme:", ["Times New Roman", "Arial", "Courier New", "Helvetica", "Verdana"], index=0)
title_font_size = st.slider("Title Font Size:", 10, 30, 16)
# Grid Settings
st.subheader("Grid Settings")
show_grid = st.checkbox("Show Grid", value=True)
show_minor_grid = st.checkbox("Show Sub-grid (Minor Grid)", value=False)
grid_direction = st.selectbox("Grid Direction:", ["x", "y", "both"], index=2)
grid_line_style = st.selectbox("Grid Line Style:", ["-", "--", "-.", ":", "None"], index=0)
grid_color = st.color_picker("Grid Line Color:", "#DDDDDD")
grid_line_width = st.slider("Grid Line Width:", 0.5, 2.5, 1.0)
# Enhanced Smoothing Settings
st.subheader("Advanced Smoothing Settings")
smoothing_method = st.selectbox(
"Smoothing Method:",
["None", "Moving Average", "Gaussian", "Savitzky-Golay", "Median", "Combined", "Exponential Moving Average", "LOWESS", "Butterworth", "Fourier Transform"]
)
# Smoothing parameters based on selected method
smoothing_params = {}
if smoothing_method == "Moving Average":
smoothing_params['window_size'] = st.slider(
"Window Size:",
3, 101, 5, step=2
)
elif smoothing_method == "Gaussian":
smoothing_params['sigma'] = st.slider(
"Sigma (Blur Amount):",
0.1, 10.0, 2.0, step=0.1
)
elif smoothing_method == "Savitzky-Golay":
smoothing_params['window_size'] = st.slider(
"Window Size:",
5, 101, 21, step=2
)
smoothing_params['poly_order'] = st.slider(
"Polynomial Order:",
1, 5, 3
)
elif smoothing_method == "Median":
smoothing_params['kernel_size'] = st.slider(
"Kernel Size:",
3, 51, 5, step=2
)
elif smoothing_method == "Combined":
smoothing_params['kernel_size'] = st.slider(
"Median Kernel Size:",
3, 51, 5, step=2
)
smoothing_params['window_size'] = st.slider(
"Savitzky-Golay Window:",
5, 101, 21, step=2
)
smoothing_params['poly_order'] = st.slider(
"Polynomial Order:",
1, 5, 3
)
elif smoothing_method == "Exponential Moving Average":
smoothing_params['span'] = st.slider(
"Span (Smoothing Factor):",
1, 50, 10
)
elif smoothing_method == "LOWESS":
smoothing_params['frac'] = st.slider(
"Fraction (Smoothing Proportion):",
0.01, 0.5, 0.1, step=0.01
)
elif smoothing_method == "Butterworth":
smoothing_params['order'] = st.slider(
"Filter Order:",
1, 10, 3
)
smoothing_params['cutoff'] = st.slider(
"Cutoff Frequency:",
0.01, 0.5, 0.05, step=0.01
)
elif smoothing_method == "Fourier Transform":
smoothing_params['keep_fraction'] = st.slider(
"Keep Fraction of Frequencies:",
0.01, 1.0, 0.1, step=0.01
)
# Vertical Marker Settings
st.subheader("Vertical Marker Settings")
marker_x_values = st.text_input("Enter X-axis Values for Markers (comma-separated):", value="")
# DPI Setting
dpi = st.selectbox("Select DPI for Download:", [100, 200, 300, 600], index=2)
# Legend Customization
st.subheader("Legend Customization")
legend_font_size = st.slider("Font Size:", 8, 20, 10)
legend_font_weight = st.selectbox("Font Weight:", ["Normal", "Bold"], index=0)
legend_bg_color = st.color_picker("Background Color:", "#FFFFFF")
legend_border_color = st.color_picker("Border Color:", "#000000")
legend_border_width = st.slider("Border Width:", 0.5, 2.0, 1.0)
legend_transparency = st.slider("Transparency (0 = fully opaque, 1 = fully transparent):", 0.0, 1.0, 0.5)
legend_title = st.text_input("Legend Title:", value="")
legend_location = st.selectbox("Legend Location:",
["upper right", "upper center", "upper left", "center right",
"center", "center left", "lower right",
"lower center", "lower left"], index=1)
legend_columns = st.selectbox("Legend Columns:", [1, 2, 3], index=1)
# Line Style Settings
st.subheader("Line Style Settings")
style_settings = {}
line_styles = {
"Solid": "-", "Dashed": "--", "Dash-Dot": "-.", "Dotted": ":"
}
marker_styles = {
"None": "", "Circle": "o", "Square": "s", "Star": "*", "Diamond": "D", "Triangle": "^",
"Pentagon": "p", "Hexagon": "H", "Plus": "+", "X": "x"
}
for y_column in y_columns:
with st.expander(f"Line Style for '{y_column}'", expanded=False):
color = st.color_picker(f"Color for '{y_column}':", "#1f77b4", key=f"color_{y_column}")
line_style = st.selectbox("Line Style:", list(line_styles.keys()), key=f"ls_{y_column}")
marker_style = st.selectbox("Marker Style:", list(marker_styles.keys()), key=f"ms_{y_column}")
line_width = st.slider("Line Width:", 0.5, 5.0, 2.0, key=f"lw_{y_column}")
style_settings[y_column] = {
"color": color,
"line_style": line_styles[line_style],
"marker_style": marker_styles[marker_style],
"line_width": line_width,
}
# Graph Output Section
st.subheader("Graph Output")
if st.button("Generate Graph"):
fig, ax = plt.subplots()
# Scaling for both X and Y axes (same options for both axes)
def apply_scaling(df, column, scale_option, unit):
if scale_option == "Hz β MHz":
df[column] = df[column] / 1e6
unit = "MHz"
elif scale_option == "Hz β GHz":
df[column] = df[column] / 1e9
unit = "GHz"
elif scale_option == "mm β cm":
df[column] = df[column] / 10
unit = "cm"
elif scale_option == "mm β m":
df[column] = df[column] / 1000
unit = "m"
elif scale_option == "cm β mm":
df[column] = df[column] * 10
unit = "mm"
elif scale_option == "m β mm":
df[column] = df[column] * 1000
unit = "mm"
elif scale_option == "Frequency β Wavelength":
df[column] = 3e8 / df[column]
unit = "Wavelength (m)"
elif scale_option == "Wavelength β Frequency":
df[column] = 3e8 / df[column]
unit = "Frequency (Hz)"
elif scale_option == "Linear β dB":
df[column] = 10 * np.log10(df[column])
unit = "dB"
elif scale_option == "dB β Linear":
df[column] = 10**(df[column] / 10)
unit = "Linear"
return df, unit
# Apply scaling for X-axis
df, x_unit = apply_scaling(df, x_column, scale_option, x_unit)
# Apply scaling for Y-axis
for col in y_columns:
df, y_unit = apply_scaling(df, col, y_scale_option, y_unit)
# Plot data with smoothing
for col in y_columns:
# Apply smoothing to the y-values
y_values = apply_smoothing(df[col].values, smoothing_method, **smoothing_params)
ax.plot(df[x_column], y_values,
label=col,
linestyle=style_settings[col]["line_style"],
marker=style_settings[col]["marker_style"],
color=style_settings[col]["color"],
linewidth=style_settings[col]["line_width"])
# Axis limits and step size
if x_min and x_max:
ax.set_xticks(np.arange(x_min, x_max + x_step, x_step))
if y_min and y_max:
ax.set_yticks(np.arange(y_min, y_max + y_step, y_step))
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
# Labels, title, and grid
ax.set_xlabel(f"{x_label} ({x_unit})", fontsize=x_font_size)
ax.set_ylabel(f"{y_label} ({y_unit})", fontsize=y_font_size)
ax.set_title(title, fontsize=title_font_size, fontstyle=font_style, family=font_theme)
ax.tick_params(axis='x', direction=x_tick_position)
ax.tick_params(axis='y', direction=y_tick_position)
if show_grid:
ax.grid(True, linestyle=grid_line_style, linewidth=grid_line_width, color=grid_color, axis=grid_direction)
if show_minor_grid:
ax.minorticks_on()
ax.grid(which='minor', linestyle=grid_line_style, linewidth=grid_line_width, color=grid_color)
# Vertical markers
if marker_x_values:
x_vals = [float(val.strip()) for val in marker_x_values.split(",")]
for val in x_vals:
ax.axvline(x=val, color="r", linestyle="--", linewidth=1.5)
# Legend
ax.legend(title=legend_title, fontsize=legend_font_size, title_fontsize=legend_font_size,
loc=legend_location, frameon=True, facecolor=legend_bg_color, edgecolor=legend_border_color,
framealpha=legend_transparency, borderpad=legend_border_width, ncol=legend_columns)
# Show graph
st.pyplot(fig)
# Download button
download_button(fig, "graph", "PNG", dpi)
except Exception as e:
st.error(f"Error: {str(e)}") |