Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	add comments
Browse files- README.md +23 -7
- crazy_functions/解析项目源代码.py +6 -6
- crazy_functions/读文章写摘要.py +3 -3
- main.py +10 -7
- predict.py +25 -1
- toolbox.py +6 -1
    	
        README.md
    CHANGED
    
    | @@ -60,7 +60,7 @@ chat分析报告生成 | [实验性功能] 运行后自动生成总结汇报 | |
| 60 |  | 
| 61 | 
             
            ## 直接运行 (Windows or Linux or MacOS)
         | 
| 62 |  | 
| 63 | 
            -
            ```
         | 
| 64 | 
             
            # 下载项目
         | 
| 65 | 
             
            git clone https://github.com/binary-husky/chatgpt_academic.git
         | 
| 66 | 
             
            cd chatgpt_academic
         | 
| @@ -73,9 +73,16 @@ python -m pip install -r requirements.txt | |
| 73 | 
             
            python main.py
         | 
| 74 |  | 
| 75 | 
             
            # 测试实验性功能
         | 
| 76 | 
            -
             | 
| 77 | 
            -
            input区域 输入 ./crazy_functions/test_project/ | 
| 78 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 79 | 
             
            ```
         | 
| 80 |  | 
| 81 |  | 
| @@ -93,9 +100,18 @@ docker build -t gpt-academic . | |
| 93 | 
             
            docker run --rm -it --net=host gpt-academic
         | 
| 94 |  | 
| 95 | 
             
            # 测试实验性功能
         | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 99 | 
             
            ```
         | 
| 100 |  | 
| 101 |  | 
|  | |
| 60 |  | 
| 61 | 
             
            ## 直接运行 (Windows or Linux or MacOS)
         | 
| 62 |  | 
| 63 | 
            +
            ``` sh
         | 
| 64 | 
             
            # 下载项目
         | 
| 65 | 
             
            git clone https://github.com/binary-husky/chatgpt_academic.git
         | 
| 66 | 
             
            cd chatgpt_academic
         | 
|  | |
| 73 | 
             
            python main.py
         | 
| 74 |  | 
| 75 | 
             
            # 测试实验性功能
         | 
| 76 | 
            +
            ## 测试C++项目头文件分析
         | 
| 77 | 
            +
            input区域 输入 ./crazy_functions/test_project/cpp/libJPG , 然后点击 "[实验] 解析整个C++项目(input输入项目根路径)"
         | 
| 78 | 
            +
            ## 测试给Latex项目写摘要
         | 
| 79 | 
            +
            input区域 输入 ./crazy_functions/test_project/latex/attention , 然后点击 "[实验] 读tex论文写摘要(input输入项目根路径)"
         | 
| 80 | 
            +
            ## 测试Python项目分析
         | 
| 81 | 
            +
            input区域 输入 ./crazy_functions/test_project/python/dqn , 然后点击 "[实验] 解析整个py项目(input输入项目根路径)"
         | 
| 82 | 
            +
            ## 测试自我代码解读
         | 
| 83 | 
            +
            点击 "[实验] 请解析并解构此项目本身"
         | 
| 84 | 
            +
            ## 测试实验功能模板函数(要求gpt回答几个数的平方是什么),您可以根据此函数为模板,实现更复杂的功能
         | 
| 85 | 
            +
            点击 "[实验] 实验功能函数模板"
         | 
| 86 | 
             
            ```
         | 
| 87 |  | 
| 88 |  | 
|  | |
| 100 | 
             
            docker run --rm -it --net=host gpt-academic
         | 
| 101 |  | 
| 102 | 
             
            # 测试实验性功能
         | 
| 103 | 
            +
            ## 测试自我代码解读
         | 
| 104 | 
            +
            点击 "[实验] 请解析并解构此项目本身"
         | 
| 105 | 
            +
            ## 测试实验功能模板函数(要求gpt回答几个数的平方是什么),您可以根据此函数为模板,实现更复杂的功能
         | 
| 106 | 
            +
            点击 "[实验] 实验功能函数模板"
         | 
| 107 | 
            +
            ##(请注意在docker中运行时,需要额外注意程序的文件访问权限问题)
         | 
| 108 | 
            +
            ## 测试C++项目头文件分析
         | 
| 109 | 
            +
            input区域 输入 ./crazy_functions/test_project/cpp/libJPG , 然后点击 "[实验] 解析整个C++项目(input输入项目根路径)"
         | 
| 110 | 
            +
            ## 测试给Latex项目写摘要
         | 
| 111 | 
            +
            input区域 输入 ./crazy_functions/test_project/latex/attention , 然后点击 "[实验] 读tex论文写摘要(input输入项目根路径)"
         | 
| 112 | 
            +
            ## 测试Python项目分析
         | 
| 113 | 
            +
            input区域 输入 ./crazy_functions/test_project/python/dqn , 然后点击 "[实验] 解析整个py项目(input输入项目根路径)"
         | 
| 114 | 
            +
             | 
| 115 | 
             
            ```
         | 
| 116 |  | 
| 117 |  | 
    	
        crazy_functions/解析项目源代码.py
    CHANGED
    
    | @@ -9,9 +9,9 @@ def 解析源代码(file_manifest, project_folder, top_p, temperature, chatbot, | |
| 9 | 
             
                    with open(fp, 'r', encoding='utf-8') as f:
         | 
| 10 | 
             
                        file_content = f.read()
         | 
| 11 |  | 
| 12 | 
            -
                     | 
| 13 | 
            -
                    i_say =  | 
| 14 | 
            -
                    i_say_show_user =  | 
| 15 | 
             
                    chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
         | 
| 16 | 
             
                    yield chatbot, history, '正常'
         | 
| 17 |  | 
| @@ -56,9 +56,9 @@ def 解析项目本身(txt, top_p, temperature, chatbot, history, systemPromptTx | |
| 56 | 
             
                    with open(fp, 'r', encoding='utf-8') as f:
         | 
| 57 | 
             
                        file_content = f.read()
         | 
| 58 |  | 
| 59 | 
            -
                     | 
| 60 | 
            -
                    i_say =  | 
| 61 | 
            -
                    i_say_show_user =  | 
| 62 | 
             
                    chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
         | 
| 63 | 
             
                    yield chatbot, history, '正常'
         | 
| 64 |  | 
|  | |
| 9 | 
             
                    with open(fp, 'r', encoding='utf-8') as f:
         | 
| 10 | 
             
                        file_content = f.read()
         | 
| 11 |  | 
| 12 | 
            +
                    prefix = "接下来请你逐文件分析下面的工程" if index==0 else ""
         | 
| 13 | 
            +
                    i_say = prefix + f'请对下面的程序文件做一个概述文件名是{os.path.relpath(fp, project_folder)},文件代码是 ```{file_content}```'
         | 
| 14 | 
            +
                    i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
         | 
| 15 | 
             
                    chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
         | 
| 16 | 
             
                    yield chatbot, history, '正常'
         | 
| 17 |  | 
|  | |
| 56 | 
             
                    with open(fp, 'r', encoding='utf-8') as f:
         | 
| 57 | 
             
                        file_content = f.read()
         | 
| 58 |  | 
| 59 | 
            +
                    prefix = "接下来请你分析自己的程序构成,别紧张," if index==0 else ""
         | 
| 60 | 
            +
                    i_say = prefix + f'请对下面的程序文件做一个概述文件名是{fp},文件代码是 ```{file_content}```'
         | 
| 61 | 
            +
                    i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的程序文件做一个概述: {os.path.abspath(fp)}'
         | 
| 62 | 
             
                    chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
         | 
| 63 | 
             
                    yield chatbot, history, '正常'
         | 
| 64 |  | 
    	
        crazy_functions/读文章写摘要.py
    CHANGED
    
    | @@ -10,9 +10,9 @@ def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, hist | |
| 10 | 
             
                    with open(fp, 'r', encoding='utf-8') as f:
         | 
| 11 | 
             
                        file_content = f.read()
         | 
| 12 |  | 
| 13 | 
            -
                     | 
| 14 | 
            -
                    i_say =  | 
| 15 | 
            -
                    i_say_show_user =  | 
| 16 | 
             
                    chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
         | 
| 17 | 
             
                    print('[1] yield chatbot, history')
         | 
| 18 | 
             
                    yield chatbot, history, '正常'
         | 
|  | |
| 10 | 
             
                    with open(fp, 'r', encoding='utf-8') as f:
         | 
| 11 | 
             
                        file_content = f.read()
         | 
| 12 |  | 
| 13 | 
            +
                    prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
         | 
| 14 | 
            +
                    i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
         | 
| 15 | 
            +
                    i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
         | 
| 16 | 
             
                    chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
         | 
| 17 | 
             
                    print('[1] yield chatbot, history')
         | 
| 18 | 
             
                    yield chatbot, history, '正常'
         | 
    	
        main.py
    CHANGED
    
    | @@ -1,11 +1,13 @@ | |
| 1 | 
            -
            import os; os.environ['no_proxy'] = '*' 
         | 
| 2 | 
             
            import gradio as gr 
         | 
| 3 | 
             
            from predict import predict
         | 
| 4 | 
             
            from toolbox import format_io, find_free_port
         | 
| 5 |  | 
| 6 | 
            -
             | 
|  | |
| 7 | 
             
            except: from config import proxies, WEB_PORT
         | 
| 8 |  | 
|  | |
| 9 | 
             
            PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
         | 
| 10 |  | 
| 11 | 
             
            initial_prompt = "Serve me as a writing and programming assistant."
         | 
| @@ -13,20 +15,21 @@ title_html = """<h1 align="center">ChatGPT 学术优化</h1>""" | |
| 13 |  | 
| 14 | 
             
            import logging
         | 
| 15 | 
             
            os.makedirs('gpt_log', exist_ok=True)
         | 
| 16 | 
            -
            logging.basicConfig(filename='gpt_log/chat_secrets.log', level=logging.INFO, encoding='utf-8')
         | 
| 17 | 
             
            print('所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log,请注意自我隐私保护哦!')
         | 
| 18 |  | 
| 19 | 
            -
            #  | 
| 20 | 
             
            from functional import get_functionals
         | 
| 21 | 
             
            functional = get_functionals()
         | 
| 22 |  | 
| 23 | 
            -
            #  | 
| 24 | 
             
            from functional_crazy import get_crazy_functionals
         | 
| 25 | 
             
            crazy_functional = get_crazy_functionals()
         | 
| 26 |  | 
|  | |
| 27 | 
             
            gr.Chatbot.postprocess = format_io
         | 
| 28 |  | 
| 29 | 
            -
            with gr.Blocks() as demo:
         | 
| 30 | 
             
                gr.HTML(title_html)
         | 
| 31 | 
             
                with gr.Row():
         | 
| 32 | 
             
                    with gr.Column(scale=2):
         | 
| @@ -66,7 +69,7 @@ with gr.Blocks() as demo: | |
| 66 | 
             
                    crazy_functional[k]["Button"].click(crazy_functional[k]["Function"], 
         | 
| 67 | 
             
                        [txt, top_p, temperature, chatbot, history, systemPromptTxt, gr.State(PORT)], [chatbot, history, statusDisplay])
         | 
| 68 |  | 
| 69 | 
            -
             | 
| 70 | 
             
            def auto_opentab_delay():
         | 
| 71 | 
             
                import threading, webbrowser, time
         | 
| 72 | 
             
                print(f"URL http://localhost:{PORT}")
         | 
|  | |
| 1 | 
            +
            import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
         | 
| 2 | 
             
            import gradio as gr 
         | 
| 3 | 
             
            from predict import predict
         | 
| 4 | 
             
            from toolbox import format_io, find_free_port
         | 
| 5 |  | 
| 6 | 
            +
            # 建议您复制一个config_private.py放自己的秘密,如API和代理网址,避免不小心传github被别人看到
         | 
| 7 | 
            +
            try: from config_private import proxies, WEB_PORT 
         | 
| 8 | 
             
            except: from config import proxies, WEB_PORT
         | 
| 9 |  | 
| 10 | 
            +
            # 如果WEB_PORT是-1,则随机选取WEB端口
         | 
| 11 | 
             
            PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
         | 
| 12 |  | 
| 13 | 
             
            initial_prompt = "Serve me as a writing and programming assistant."
         | 
|  | |
| 15 |  | 
| 16 | 
             
            import logging
         | 
| 17 | 
             
            os.makedirs('gpt_log', exist_ok=True)
         | 
| 18 | 
            +
            logging.basicConfig(filename='gpt_log/chat_secrets.log', level=logging.INFO, encoding='utf-8') # python 版本建议3.9+(越新越好)
         | 
| 19 | 
             
            print('所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log,请注意自我隐私保护哦!')
         | 
| 20 |  | 
| 21 | 
            +
            # 一些普通功能模块
         | 
| 22 | 
             
            from functional import get_functionals
         | 
| 23 | 
             
            functional = get_functionals()
         | 
| 24 |  | 
| 25 | 
            +
            # 对一些丧心病狂的实验性功能模块进行测试
         | 
| 26 | 
             
            from functional_crazy import get_crazy_functionals
         | 
| 27 | 
             
            crazy_functional = get_crazy_functionals()
         | 
| 28 |  | 
| 29 | 
            +
            # 处理markdown文本格式的转变
         | 
| 30 | 
             
            gr.Chatbot.postprocess = format_io
         | 
| 31 |  | 
| 32 | 
            +
            with gr.Blocks() as demo:   # 借助gradio框架,实现webUI
         | 
| 33 | 
             
                gr.HTML(title_html)
         | 
| 34 | 
             
                with gr.Row():
         | 
| 35 | 
             
                    with gr.Column(scale=2):
         | 
|  | |
| 69 | 
             
                    crazy_functional[k]["Button"].click(crazy_functional[k]["Function"], 
         | 
| 70 | 
             
                        [txt, top_p, temperature, chatbot, history, systemPromptTxt, gr.State(PORT)], [chatbot, history, statusDisplay])
         | 
| 71 |  | 
| 72 | 
            +
            # 延迟函数,做一些准备工作,最后尝试打开浏览器
         | 
| 73 | 
             
            def auto_opentab_delay():
         | 
| 74 | 
             
                import threading, webbrowser, time
         | 
| 75 | 
             
                print(f"URL http://localhost:{PORT}")
         | 
    	
        predict.py
    CHANGED
    
    | @@ -15,6 +15,9 @@ except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY | |
| 15 | 
             
            timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.'
         | 
| 16 |  | 
| 17 | 
             
            def get_full_error(chunk, stream_response):
         | 
|  | |
|  | |
|  | |
| 18 | 
             
                while True:
         | 
| 19 | 
             
                    try:
         | 
| 20 | 
             
                        chunk += next(stream_response)
         | 
| @@ -23,6 +26,16 @@ def get_full_error(chunk, stream_response): | |
| 23 | 
             
                return chunk
         | 
| 24 |  | 
| 25 | 
             
            def predict_no_ui(inputs, top_p, temperature, history=[]):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
                headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt="", stream=False)
         | 
| 27 |  | 
| 28 | 
             
                retry = 0
         | 
| @@ -47,7 +60,15 @@ def predict_no_ui(inputs, top_p, temperature, history=[]): | |
| 47 |  | 
| 48 | 
             
            def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', 
         | 
| 49 | 
             
                        stream = True, additional_fn=None):
         | 
| 50 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 51 | 
             
                if additional_fn is not None:
         | 
| 52 | 
             
                    import functional
         | 
| 53 | 
             
                    importlib.reload(functional)
         | 
| @@ -115,6 +136,9 @@ def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='' | |
| 115 | 
             
                                return
         | 
| 116 |  | 
| 117 | 
             
            def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
         | 
|  | |
|  | |
|  | |
| 118 | 
             
                headers = {
         | 
| 119 | 
             
                    "Content-Type": "application/json",
         | 
| 120 | 
             
                    "Authorization": f"Bearer {API_KEY}"
         | 
|  | |
| 15 | 
             
            timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.'
         | 
| 16 |  | 
| 17 | 
             
            def get_full_error(chunk, stream_response):
         | 
| 18 | 
            +
                """
         | 
| 19 | 
            +
                    获取完整的从Openai返回的报错
         | 
| 20 | 
            +
                """
         | 
| 21 | 
             
                while True:
         | 
| 22 | 
             
                    try:
         | 
| 23 | 
             
                        chunk += next(stream_response)
         | 
|  | |
| 26 | 
             
                return chunk
         | 
| 27 |  | 
| 28 | 
             
            def predict_no_ui(inputs, top_p, temperature, history=[]):
         | 
| 29 | 
            +
                """
         | 
| 30 | 
            +
                    发送至chatGPT,等待回复,一次性完成,不显示中间过程。
         | 
| 31 | 
            +
                    predict函数的简化版。
         | 
| 32 | 
            +
                    用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    inputs 是本次问询的输入
         | 
| 35 | 
            +
                    top_p, temperature是chatGPT的内部调优参数
         | 
| 36 | 
            +
                    history 是之前的对话列表
         | 
| 37 | 
            +
                    (注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError)
         | 
| 38 | 
            +
                """
         | 
| 39 | 
             
                headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt="", stream=False)
         | 
| 40 |  | 
| 41 | 
             
                retry = 0
         | 
|  | |
| 60 |  | 
| 61 | 
             
            def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', 
         | 
| 62 | 
             
                        stream = True, additional_fn=None):
         | 
| 63 | 
            +
                """
         | 
| 64 | 
            +
                    发送至chatGPT,流式获取输出。
         | 
| 65 | 
            +
                    用于基础的对话功能。
         | 
| 66 | 
            +
                    inputs 是本次问询的输入
         | 
| 67 | 
            +
                    top_p, temperature是chatGPT的内部调优参数
         | 
| 68 | 
            +
                    history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
         | 
| 69 | 
            +
                    chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
         | 
| 70 | 
            +
                    additional_fn代表点击的哪个按钮,按钮见functional.py
         | 
| 71 | 
            +
                """
         | 
| 72 | 
             
                if additional_fn is not None:
         | 
| 73 | 
             
                    import functional
         | 
| 74 | 
             
                    importlib.reload(functional)
         | 
|  | |
| 136 | 
             
                                return
         | 
| 137 |  | 
| 138 | 
             
            def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
         | 
| 139 | 
            +
                """
         | 
| 140 | 
            +
                    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
         | 
| 141 | 
            +
                """
         | 
| 142 | 
             
                headers = {
         | 
| 143 | 
             
                    "Content-Type": "application/json",
         | 
| 144 | 
             
                    "Authorization": f"Bearer {API_KEY}"
         | 
    	
        toolbox.py
    CHANGED
    
    | @@ -10,7 +10,10 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp | |
| 10 | 
             
                try: from config_private import TIMEOUT_SECONDS, MAX_RETRY
         | 
| 11 | 
             
                except: from config import TIMEOUT_SECONDS, MAX_RETRY
         | 
| 12 | 
             
                from predict import predict_no_ui
         | 
|  | |
|  | |
| 13 | 
             
                mutable = [None, '']
         | 
|  | |
| 14 | 
             
                def mt(i_say, history): 
         | 
| 15 | 
             
                    while True:
         | 
| 16 | 
             
                        try:
         | 
| @@ -25,14 +28,16 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp | |
| 25 | 
             
                                mutable[1] = 'Warning! Input file is too long, cut into half. '
         | 
| 26 | 
             
                        except TimeoutError as e:
         | 
| 27 | 
             
                            mutable[0] = '[Local Message] Failed with timeout'
         | 
| 28 | 
            -
             | 
| 29 | 
             
                thread_name = threading.Thread(target=mt, args=(i_say, history)); thread_name.start()
         | 
|  | |
| 30 | 
             
                cnt = 0
         | 
| 31 | 
             
                while thread_name.is_alive():
         | 
| 32 | 
             
                    cnt += 1
         | 
| 33 | 
             
                    chatbot[-1] = (i_say_show_user, f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt%4)))
         | 
| 34 | 
             
                    yield chatbot, history, '正常'
         | 
| 35 | 
             
                    time.sleep(1)
         | 
|  | |
| 36 | 
             
                gpt_say = mutable[0]
         | 
| 37 | 
             
                return gpt_say
         | 
| 38 |  | 
|  | |
| 10 | 
             
                try: from config_private import TIMEOUT_SECONDS, MAX_RETRY
         | 
| 11 | 
             
                except: from config import TIMEOUT_SECONDS, MAX_RETRY
         | 
| 12 | 
             
                from predict import predict_no_ui
         | 
| 13 | 
            +
                # 多线程的时候,需要一个mutable结构在不同线程之间传递信息
         | 
| 14 | 
            +
                # list就是最简单的mutable结构,我们第一个位置放gpt输出,第二个位置传递报错信息
         | 
| 15 | 
             
                mutable = [None, '']
         | 
| 16 | 
            +
                # multi-threading worker
         | 
| 17 | 
             
                def mt(i_say, history): 
         | 
| 18 | 
             
                    while True:
         | 
| 19 | 
             
                        try:
         | 
|  | |
| 28 | 
             
                                mutable[1] = 'Warning! Input file is too long, cut into half. '
         | 
| 29 | 
             
                        except TimeoutError as e:
         | 
| 30 | 
             
                            mutable[0] = '[Local Message] Failed with timeout'
         | 
| 31 | 
            +
                # 创建新线程发出http请求
         | 
| 32 | 
             
                thread_name = threading.Thread(target=mt, args=(i_say, history)); thread_name.start()
         | 
| 33 | 
            +
                # 原来的线程则负责持续更新UI,实现一个超时倒计时,并等待新线程的任务完成
         | 
| 34 | 
             
                cnt = 0
         | 
| 35 | 
             
                while thread_name.is_alive():
         | 
| 36 | 
             
                    cnt += 1
         | 
| 37 | 
             
                    chatbot[-1] = (i_say_show_user, f"[Local Message] {mutable[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS*2*(MAX_RETRY+1)}"+''.join(['.']*(cnt%4)))
         | 
| 38 | 
             
                    yield chatbot, history, '正常'
         | 
| 39 | 
             
                    time.sleep(1)
         | 
| 40 | 
            +
                # 把gpt的输出从mutable中取出来
         | 
| 41 | 
             
                gpt_say = mutable[0]
         | 
| 42 | 
             
                return gpt_say
         | 
| 43 |  |