File size: 8,128 Bytes
67b476c
 
c3a0684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ca3bc
c3a0684
 
 
 
 
 
 
b4ca3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67b476c
 
 
 
 
 
 
 
 
 
 
b4ca3bc
c3a0684
67b476c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a0684
67b476c
 
b4ca3bc
67b476c
 
 
 
 
 
b4ca3bc
 
 
 
 
67b476c
 
 
 
 
 
b4ca3bc
c3a0684
 
 
 
 
 
 
 
 
 
b4ca3bc
 
 
 
 
 
 
 
 
 
c3a0684
 
67b476c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a0684
 
 
67b476c
 
c3a0684
67b476c
 
c3a0684
 
67b476c
 
 
 
 
 
 
c3a0684
 
 
67b476c
 
 
 
 
c3a0684
67b476c
b4ca3bc
67b476c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a0684
67b476c
 
 
 
 
 
 
 
 
 
 
 
 
c3a0684
67b476c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# AlphaGeometry\n",
    "由DeepMind开源的AlphaGeometry用于几何解题工具。\n",
    "\n",
    "## 一.使用方法\n",
    "\n",
    "### 1. 上传题目\n",
    "\n",
    "双击左侧problems.txt,在末尾换行后添加新的题目,格式见第二部分。该文件已经有部分例子\n",
    "\n",
    "### 2. 修改配置\n",
    "\n",
    "在下方代码块中直接修改PROB的值,修改为题目名称。\n",
    "\n",
    "### 3. 运行\n",
    "\n",
    "从上之下依次点击代码块左侧的运行按钮即可,或者点击上方的双箭头按钮运行全部代码块。\n",
    "\n",
    "### 4. 查看结果\n",
    "\n",
    "运行结束后,双击打开左侧的ag4mtest文件夹,双击打开`题目名.out`文件。\n",
    "\n",
    "## 二.题目格式\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "PROB='imo-2024-q4'\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "executionInfo": {
     "elapsed": 611,
     "status": "ok",
     "timestamp": 1733595497864,
     "user": {
      "displayName": "Tong Peng",
      "userId": "14680520704856526492"
     },
     "user_tz": 300
    },
    "id": "-IHoHd-t5sLP"
   },
   "outputs": [],
   "source": [
    "import sys, os\n",
    "\n",
    "AG4MDIR='/home/user/app/aglib/ag4masses'\n",
    "AGLIB=f'/home/user/app/aglib/'\n",
    "AGDIR=f\"{AG4MDIR}/alphageometry\"\n",
    "MELIAD_PATH=f\"{AGLIB}/meliad\"\n",
    "DATA=f\"{AGLIB}/ag_ckpt_vocab\"\n",
    "TESTDIR=f\"/data/ag4mtest\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "jUWvch7kYhxt"
   },
   "source": [
    "# Execution"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "#!! cannot have ' in the script, including in comments\n",
    "jobScript = '''\n",
    "# !/bin/bash\n",
    "set -e\n",
    "set -x\n",
    "\n",
    "# stdout, solution is written here\n",
    "OUTFILE=$TESTDIR/${PROB}.out\n",
    "# stderr, a lot of information, error message, log etc.\n",
    "ERRFILE=$TESTDIR/${PROB}.log\n",
    "\n",
    "# stdout and stderr are written to both ERRFILF and console\n",
    "exec >$ERRFILE 2>&1\n",
    "\n",
    "echo PROB=$PROB\n",
    "echo PROB_FILE=$PROBFILE\n",
    "echo MODEL=$MODEL\n",
    "\n",
    "# Directory where output files go\n",
    "echo TESTDIR=$TESTDIR\n",
    "# Directory containing AG4Masses source files\n",
    "echo AG4MDIR=$AG4MDIR\n",
    "# Directory containing external libraries including ag_ckpt_vocab and meliad\n",
    "echo AGLIB=$AGLIB\n",
    "\n",
    "AGDIR=$AG4MDIR/alphageometry\n",
    "export PYTHONPATH=$PYTHONPATH:$AGDIR:$AGLIB\n",
    "\n",
    "echo BATCH_SIZE=$BATCH_SIZE\n",
    "echo BEAM_SIZE=$BEAM_SIZE\n",
    "echo DEPTH=$DEPTH\n",
    "echo NWORKERS=$NWORKERS\n",
    "\n",
    "echo ERRFILE=$ERRFILE\n",
    "echo OUTFILE=$OUTFILE\n",
    "\n",
    "DATA=$AGLIB/ag_ckpt_vocab\n",
    "MELIAD_PATH=$AGLIB/meliad\n",
    "export PYTHONPATH=$PYTHONPATH:$MELIAD_PATH\n",
    "\n",
    "DDAR_ARGS=( \\\n",
    "  --defs_file=$AGDIR/defs.txt \\\n",
    "  --rules_file=$AGDIR/rules.txt \\\n",
    ")\n",
    "\n",
    "SEARCH_ARGS=(\n",
    "  --beam_size=$BEAM_SIZE\n",
    "  --search_depth=$DEPTH\n",
    ")\n",
    "\n",
    "LM_ARGS=(\n",
    "  --ckpt_path=$DATA \\\n",
    "  --vocab_path=$DATA/geometry.757.model \\\n",
    "  --gin_search_paths=$MELIAD_PATH/transformer/configs,$AGDIR \\\n",
    "  --gin_file=base_htrans.gin \\\n",
    "  --gin_file=size/medium_150M.gin \\\n",
    "  --gin_file=options/positions_t5.gin \\\n",
    "  --gin_file=options/lr_cosine_decay.gin \\\n",
    "  --gin_file=options/seq_1024_nocache.gin \\\n",
    "  --gin_file=geometry_150M_generate.gin \\\n",
    "  --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True \\\n",
    "  --gin_param=TransformerTaskConfig.batch_size=$BATCH_SIZE \\\n",
    "  --gin_param=TransformerTaskConfig.sequence_length=128 \\\n",
    "  --gin_param=Trainer.restore_state_variables=False\n",
    ");\n",
    "\n",
    "true \"==========================================\"\n",
    "\n",
    "cd $AG4MDIR\n",
    "python -m alphageometry \\\n",
    "--alsologtostderr \\\n",
    "--problems_file=$PROBFILE \\\n",
    "--problem_name=$PROB \\\n",
    "--mode=$MODEL \\\n",
    "\"${DDAR_ARGS[@]}\" \\\n",
    "\"${SEARCH_ARGS[@]}\" \\\n",
    "\"${LM_ARGS[@]}\" \\\n",
    "--out_file=$OUTFILE \\\n",
    "--n_workers=$NWORKERS 2>&1\n",
    "\n",
    "echo =======================================\n",
    "echo Task Done.\n",
    "echo See ag4mtest/$PROB.out and ag4mtest/$PROB.log for more information\n",
    "\n",
    "'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "+ OUTFILE=/data/ag4mtest/imo-2024-q4.out\n",
      "+ ERRFILE=/data/ag4mtest/imo-2024-q4.log\n",
      "+ exec\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "256"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "os.environ[\"TESTDIR\"]=TESTDIR\n",
    "os.environ[\"AG4MDIR\"]=AG4MDIR\n",
    "os.environ[\"AGLIB\"]=AGLIB\n",
    "\n",
    "# BATCH_SIZE: number of outputs for each LM query\n",
    "# BEAM_SIZE: size of the breadth-first search queue\n",
    "# DEPTH: search depth (number of auxilary points to add)\n",
    "# NWORKERS: number of parallel run worker processes.\n",
    "# \n",
    "# Memory usage is affected by BATCH_SIZE, NWORKER and complexity of the problem.\n",
    "# Larger NWORKER and BATCH_SIZE tends to cause out of memory issue\n",
    "#\n",
    "# The results in Google paper can be obtained by setting BATCH_SIZE=32, BEAM_SIZE=512, DEPTH=16\n",
    "#\n",
    "# 1/2025: Kaggle free version provides GPU T4x2, 4 virtual CPUs, 29G RAM. Can set \n",
    "#   NWORKERS=2\n",
    "#   CUDA_VISIBLE_DEVICES=0,1\n",
    "\n",
    "os.environ[\"BATCH_SIZE\"]=\"2\"\n",
    "os.environ[\"BEAM_SIZE\"]=\"2\"\n",
    "os.environ[\"DEPTH\"]=\"2\"\n",
    "os.environ[\"NWORKERS\"]=\"2\"\n",
    "\n",
    "# o# s.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0,1\"\n",
    "\n",
    "# test problems can be uploaded into a dataset, e.g. for dataset \"tmpfiles\", \"/kaggle/input/tmpfiles/test-problems.txt\"\n",
    "os.environ[\"PROBFILE\"]=\"/data/problems.txt\"\n",
    "# PROB=\"imo-2024-q4\"\n",
    "os.environ[\"PROB\"]=PROB\n",
    "# alphageometry|ddar\n",
    "os.environ[\"MODEL\"]=\"alphageometry\"\n",
    "\n",
    "# In an interactive Kaggle session, run the job in background, so we can do other things in the Notebook.\n",
    "# For long jobs, commit the Notebook and run in Batch mode.\n",
    "# An interactive session will be terminated after about 20 minutes of idle time.\n",
    "# if os.environ[\"KAGGLE_KERNEL_RUN_TYPE\"]==\"Batch\":\n",
    "os.system(f\"echo '{jobScript}'|bash\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "authorship_tag": "ABX9TyOcsgkfOgCk5oTpUiS6zrgo",
   "collapsed_sections": [
    "pW2KIijZBAdh"
   ],
   "gpuType": "T4",
   "provenance": []
  },
  "kaggle": {
   "accelerator": "nvidiaTeslaT4",
   "dataSources": [],
   "dockerImageVersionId": 30823,
   "isGpuEnabled": true,
   "isInternetEnabled": true,
   "language": "python",
   "sourceType": "notebook"
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}