Spaces:
Sleeping
Sleeping
File size: 8,128 Bytes
67b476c c3a0684 b4ca3bc c3a0684 b4ca3bc 67b476c b4ca3bc c3a0684 67b476c c3a0684 67b476c b4ca3bc 67b476c b4ca3bc 67b476c b4ca3bc c3a0684 b4ca3bc c3a0684 67b476c c3a0684 67b476c c3a0684 67b476c c3a0684 67b476c c3a0684 67b476c c3a0684 67b476c b4ca3bc 67b476c c3a0684 67b476c c3a0684 67b476c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AlphaGeometry\n",
"由DeepMind开源的AlphaGeometry用于几何解题工具。\n",
"\n",
"## 一.使用方法\n",
"\n",
"### 1. 上传题目\n",
"\n",
"双击左侧problems.txt,在末尾换行后添加新的题目,格式见第二部分。该文件已经有部分例子\n",
"\n",
"### 2. 修改配置\n",
"\n",
"在下方代码块中直接修改PROB的值,修改为题目名称。\n",
"\n",
"### 3. 运行\n",
"\n",
"从上之下依次点击代码块左侧的运行按钮即可,或者点击上方的双箭头按钮运行全部代码块。\n",
"\n",
"### 4. 查看结果\n",
"\n",
"运行结束后,双击打开左侧的ag4mtest文件夹,双击打开`题目名.out`文件。\n",
"\n",
"## 二.题目格式\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"\n",
"PROB='imo-2024-q4'\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"executionInfo": {
"elapsed": 611,
"status": "ok",
"timestamp": 1733595497864,
"user": {
"displayName": "Tong Peng",
"userId": "14680520704856526492"
},
"user_tz": 300
},
"id": "-IHoHd-t5sLP"
},
"outputs": [],
"source": [
"import sys, os\n",
"\n",
"AG4MDIR='/home/user/app/aglib/ag4masses'\n",
"AGLIB=f'/home/user/app/aglib/'\n",
"AGDIR=f\"{AG4MDIR}/alphageometry\"\n",
"MELIAD_PATH=f\"{AGLIB}/meliad\"\n",
"DATA=f\"{AGLIB}/ag_ckpt_vocab\"\n",
"TESTDIR=f\"/data/ag4mtest\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jUWvch7kYhxt"
},
"source": [
"# Execution"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#!! cannot have ' in the script, including in comments\n",
"jobScript = '''\n",
"# !/bin/bash\n",
"set -e\n",
"set -x\n",
"\n",
"# stdout, solution is written here\n",
"OUTFILE=$TESTDIR/${PROB}.out\n",
"# stderr, a lot of information, error message, log etc.\n",
"ERRFILE=$TESTDIR/${PROB}.log\n",
"\n",
"# stdout and stderr are written to both ERRFILF and console\n",
"exec >$ERRFILE 2>&1\n",
"\n",
"echo PROB=$PROB\n",
"echo PROB_FILE=$PROBFILE\n",
"echo MODEL=$MODEL\n",
"\n",
"# Directory where output files go\n",
"echo TESTDIR=$TESTDIR\n",
"# Directory containing AG4Masses source files\n",
"echo AG4MDIR=$AG4MDIR\n",
"# Directory containing external libraries including ag_ckpt_vocab and meliad\n",
"echo AGLIB=$AGLIB\n",
"\n",
"AGDIR=$AG4MDIR/alphageometry\n",
"export PYTHONPATH=$PYTHONPATH:$AGDIR:$AGLIB\n",
"\n",
"echo BATCH_SIZE=$BATCH_SIZE\n",
"echo BEAM_SIZE=$BEAM_SIZE\n",
"echo DEPTH=$DEPTH\n",
"echo NWORKERS=$NWORKERS\n",
"\n",
"echo ERRFILE=$ERRFILE\n",
"echo OUTFILE=$OUTFILE\n",
"\n",
"DATA=$AGLIB/ag_ckpt_vocab\n",
"MELIAD_PATH=$AGLIB/meliad\n",
"export PYTHONPATH=$PYTHONPATH:$MELIAD_PATH\n",
"\n",
"DDAR_ARGS=( \\\n",
" --defs_file=$AGDIR/defs.txt \\\n",
" --rules_file=$AGDIR/rules.txt \\\n",
")\n",
"\n",
"SEARCH_ARGS=(\n",
" --beam_size=$BEAM_SIZE\n",
" --search_depth=$DEPTH\n",
")\n",
"\n",
"LM_ARGS=(\n",
" --ckpt_path=$DATA \\\n",
" --vocab_path=$DATA/geometry.757.model \\\n",
" --gin_search_paths=$MELIAD_PATH/transformer/configs,$AGDIR \\\n",
" --gin_file=base_htrans.gin \\\n",
" --gin_file=size/medium_150M.gin \\\n",
" --gin_file=options/positions_t5.gin \\\n",
" --gin_file=options/lr_cosine_decay.gin \\\n",
" --gin_file=options/seq_1024_nocache.gin \\\n",
" --gin_file=geometry_150M_generate.gin \\\n",
" --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True \\\n",
" --gin_param=TransformerTaskConfig.batch_size=$BATCH_SIZE \\\n",
" --gin_param=TransformerTaskConfig.sequence_length=128 \\\n",
" --gin_param=Trainer.restore_state_variables=False\n",
");\n",
"\n",
"true \"==========================================\"\n",
"\n",
"cd $AG4MDIR\n",
"python -m alphageometry \\\n",
"--alsologtostderr \\\n",
"--problems_file=$PROBFILE \\\n",
"--problem_name=$PROB \\\n",
"--mode=$MODEL \\\n",
"\"${DDAR_ARGS[@]}\" \\\n",
"\"${SEARCH_ARGS[@]}\" \\\n",
"\"${LM_ARGS[@]}\" \\\n",
"--out_file=$OUTFILE \\\n",
"--n_workers=$NWORKERS 2>&1\n",
"\n",
"echo =======================================\n",
"echo Task Done.\n",
"echo See ag4mtest/$PROB.out and ag4mtest/$PROB.log for more information\n",
"\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"+ OUTFILE=/data/ag4mtest/imo-2024-q4.out\n",
"+ ERRFILE=/data/ag4mtest/imo-2024-q4.log\n",
"+ exec\n"
]
},
{
"data": {
"text/plain": [
"256"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.environ[\"TESTDIR\"]=TESTDIR\n",
"os.environ[\"AG4MDIR\"]=AG4MDIR\n",
"os.environ[\"AGLIB\"]=AGLIB\n",
"\n",
"# BATCH_SIZE: number of outputs for each LM query\n",
"# BEAM_SIZE: size of the breadth-first search queue\n",
"# DEPTH: search depth (number of auxilary points to add)\n",
"# NWORKERS: number of parallel run worker processes.\n",
"# \n",
"# Memory usage is affected by BATCH_SIZE, NWORKER and complexity of the problem.\n",
"# Larger NWORKER and BATCH_SIZE tends to cause out of memory issue\n",
"#\n",
"# The results in Google paper can be obtained by setting BATCH_SIZE=32, BEAM_SIZE=512, DEPTH=16\n",
"#\n",
"# 1/2025: Kaggle free version provides GPU T4x2, 4 virtual CPUs, 29G RAM. Can set \n",
"# NWORKERS=2\n",
"# CUDA_VISIBLE_DEVICES=0,1\n",
"\n",
"os.environ[\"BATCH_SIZE\"]=\"2\"\n",
"os.environ[\"BEAM_SIZE\"]=\"2\"\n",
"os.environ[\"DEPTH\"]=\"2\"\n",
"os.environ[\"NWORKERS\"]=\"2\"\n",
"\n",
"# o# s.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0,1\"\n",
"\n",
"# test problems can be uploaded into a dataset, e.g. for dataset \"tmpfiles\", \"/kaggle/input/tmpfiles/test-problems.txt\"\n",
"os.environ[\"PROBFILE\"]=\"/data/problems.txt\"\n",
"# PROB=\"imo-2024-q4\"\n",
"os.environ[\"PROB\"]=PROB\n",
"# alphageometry|ddar\n",
"os.environ[\"MODEL\"]=\"alphageometry\"\n",
"\n",
"# In an interactive Kaggle session, run the job in background, so we can do other things in the Notebook.\n",
"# For long jobs, commit the Notebook and run in Batch mode.\n",
"# An interactive session will be terminated after about 20 minutes of idle time.\n",
"# if os.environ[\"KAGGLE_KERNEL_RUN_TYPE\"]==\"Batch\":\n",
"os.system(f\"echo '{jobScript}'|bash\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"authorship_tag": "ABX9TyOcsgkfOgCk5oTpUiS6zrgo",
"collapsed_sections": [
"pW2KIijZBAdh"
],
"gpuType": "T4",
"provenance": []
},
"kaggle": {
"accelerator": "nvidiaTeslaT4",
"dataSources": [],
"dockerImageVersionId": 30823,
"isGpuEnabled": true,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|