Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import pandas as pd
|
5 |
+
from textblob import TextBlob
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# model_path = "C:\\Users\\abdul\\Documents\\genaiproj\\genai\\Models\\models--distilbert--distilbert-base-uncased-finetuned-sst-2-english"
|
9 |
+
analyzer = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
10 |
+
# analyzer = pipeline("text-classification", model=model_path)
|
11 |
+
|
12 |
+
# print(analyzer(["Nice to meet you!", "very expensive"]))
|
13 |
+
|
14 |
+
def sentiment_analysis(review):
|
15 |
+
sentiment = analyzer(review)
|
16 |
+
return sentiment[0]['label']
|
17 |
+
|
18 |
+
def plot_sentiment_distribution(df):
|
19 |
+
# Check if required columns are present
|
20 |
+
if 'Review' not in df.columns or 'Sentiment' not in df.columns:
|
21 |
+
raise ValueError("DataFrame must contain 'Review' and 'Sentiment' columns.")
|
22 |
+
|
23 |
+
# Count positive and negative sentiments
|
24 |
+
sentiment_counts = df['Sentiment'].value_counts()
|
25 |
+
|
26 |
+
# Create a bar chart
|
27 |
+
fig, ax = plt.subplots()
|
28 |
+
sentiment_counts.plot(kind='bar', ax=ax, color=['skyblue', 'salmon'])
|
29 |
+
|
30 |
+
# Set chart labels and title
|
31 |
+
ax.set_xlabel('Sentiment')
|
32 |
+
ax.set_ylabel('Count')
|
33 |
+
ax.set_title('Sentiment Distribution')
|
34 |
+
|
35 |
+
# Return the figure object
|
36 |
+
return fig
|
37 |
+
|
38 |
+
def analyze_reviews(file):
|
39 |
+
if not file.name.endswith('.xlsx'):
|
40 |
+
return "Invalid file type. Please upload an Excel file."
|
41 |
+
|
42 |
+
# Read the Excel file
|
43 |
+
df = pd.read_excel(file)
|
44 |
+
|
45 |
+
if 'Review' not in df.columns:
|
46 |
+
return "The Excel file must contain a column named 'Review'."
|
47 |
+
|
48 |
+
# Apply get_sentiment function to each review and create new column
|
49 |
+
df['Sentiment'] = df['Review'].apply(sentiment_analysis)
|
50 |
+
chart_object = plot_sentiment_distribution(df)
|
51 |
+
return df, chart_object
|
52 |
+
|
53 |
+
# Result = analyze_reviews("C:\\Users\\abdul\\Documents\\genaiproj\\genai\\Files\\app_reviews.xlsx")
|
54 |
+
# print(Result)
|
55 |
+
|
56 |
+
# Example usage
|
57 |
+
# file_path = 'path_to_your_excel_file.xlsx' # Update with your actual file path
|
58 |
+
# result_df = analyze_reviews(file_path)
|
59 |
+
# print(result_df)
|
60 |
+
|
61 |
+
|
62 |
+
gr.close_all()
|
63 |
+
|
64 |
+
# demo = gr.Interface(fn=summary, inputs="text", outputs="text")
|
65 |
+
|
66 |
+
demo = gr.Interface(
|
67 |
+
fn=analyze_reviews,
|
68 |
+
inputs=[gr.File(label="Input file to analyze")],
|
69 |
+
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Distribution")],
|
70 |
+
title="Sentiment Analyzer",
|
71 |
+
theme="soft",
|
72 |
+
description="Analyze the sentiment of any review in seconds!")
|
73 |
+
|
74 |
+
demo.launch(share=True)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# Example usage
|
80 |
+
# data = {'Review': ['Great product!', 'Not good', 'Excellent service', 'Bad experience'],
|
81 |
+
# 'Sentiment': ['Positive', 'Negative', 'Positive', 'Negative']}
|
82 |
+
# df = pd.DataFrame(data)
|
83 |
+
# fig = plot_sentiment_distribution(df)
|
84 |
+
# fig.show()
|