import torch import gradio as gr from transformers import pipeline import json #test # model_path = "C:\\Users\\abdul\\Documents\\genaiproj\\genai\\Models\models--facebook--nllb-200-distilled-600M\\snapshots\\f8d333a098d19b4fd9a8b18f94170487ad3f821d" text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) # text_translator = pipeline("translation", model=model_path, torch_dtype=torch.bfloat16) # with open('C:\\Users\\abdul\\Documents\\genaiproj\\genai\\Files\\language.json', 'r') as file: with open('language.json', 'r') as file: language_data = json.load(file) def get_flores_code_from_language(language_name): for entry in language_data: if entry["Language"].lower() == language_name.lower(): return entry["FLORES-200 code"] return "Language not found." def translate_text(text, destination_language): # text = input("Enter the text to translate: ") dest_code = get_flores_code_from_language(destination_language) translation = text_translator(text, src_lang ="eng_Latn", tgt_lang =dest_code) return translation[0]["translation_text"] gr.close_all() # demo = gr.Interface(fn=summary, inputs="text", outputs="text") demo = gr.Interface( fn=translate_text, inputs=[gr.Textbox(label="Input text to translate", lines=6), gr.Dropdown(["German", "French", "Tamil", "Romanian", "Arabic"], label="Select Destination Language")], outputs=[gr.Textbox(label="Translated text", lines=4)], title="Multilanguage Translator", theme="soft", description="Translate text to any language in seconds!") demo.launch(share=True)