Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
import json | |
#test | |
# model_path = "C:\\Users\\abdul\\Documents\\genaiproj\\genai\\Models\models--facebook--nllb-200-distilled-600M\\snapshots\\f8d333a098d19b4fd9a8b18f94170487ad3f821d" | |
text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) | |
# text_translator = pipeline("translation", model=model_path, torch_dtype=torch.bfloat16) | |
# with open('C:\\Users\\abdul\\Documents\\genaiproj\\genai\\Files\\language.json', 'r') as file: | |
with open('language.json', 'r') as file: | |
language_data = json.load(file) | |
def get_flores_code_from_language(language_name): | |
for entry in language_data: | |
if entry["Language"].lower() == language_name.lower(): | |
return entry["FLORES-200 code"] | |
return "Language not found." | |
def translate_text(text, destination_language): | |
# text = input("Enter the text to translate: ") | |
dest_code = get_flores_code_from_language(destination_language) | |
translation = text_translator(text, | |
src_lang ="eng_Latn", | |
tgt_lang =dest_code) | |
return translation[0]["translation_text"] | |
gr.close_all() | |
# demo = gr.Interface(fn=summary, inputs="text", outputs="text") | |
demo = gr.Interface( | |
fn=translate_text, | |
inputs=[gr.Textbox(label="Input text to translate", lines=6), gr.Dropdown(["German", "French", "Tamil", "Romanian", "Arabic"], label="Select Destination Language")], | |
outputs=[gr.Textbox(label="Translated text", lines=4)], | |
title="Multilanguage Translator", | |
theme="soft", | |
description="Translate text to any language in seconds!") | |
demo.launch(share=True) |