Spaces:
Runtime error
Runtime error
use latest diffusers
Browse files- requirements.txt +1 -1
- stablediffusion-infinity/app.py +13 -10
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
torch
|
| 3 |
huggingface_hub
|
| 4 |
-
|
| 5 |
transformers
|
| 6 |
scikit-image==0.19.3
|
| 7 |
Pillow==9.2.0
|
|
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
torch
|
| 3 |
huggingface_hub
|
| 4 |
+
diffusers==0.9
|
| 5 |
transformers
|
| 6 |
scikit-image==0.19.3
|
| 7 |
Pillow==9.2.0
|
stablediffusion-infinity/app.py
CHANGED
|
@@ -13,7 +13,7 @@ from fastapi_utils.tasks import repeat_every
|
|
| 13 |
import numpy as np
|
| 14 |
import torch
|
| 15 |
from torch import autocast
|
| 16 |
-
from diffusers import
|
| 17 |
from diffusers.models import AutoencoderKL
|
| 18 |
|
| 19 |
from PIL import Image
|
|
@@ -108,12 +108,11 @@ def sync_rooms_data_repo():
|
|
| 108 |
|
| 109 |
def get_model():
|
| 110 |
if "inpaint" not in model:
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
).to("cuda")
|
| 117 |
model["inpaint"] = inpaint
|
| 118 |
|
| 119 |
return model["inpaint"]
|
|
@@ -182,7 +181,9 @@ async def run_outpaint(
|
|
| 182 |
guidance_scale=guidance,
|
| 183 |
)
|
| 184 |
image = output["images"][0]
|
| 185 |
-
is_nsfw =
|
|
|
|
|
|
|
| 186 |
image_url = {}
|
| 187 |
|
| 188 |
if not is_nsfw:
|
|
@@ -374,8 +375,10 @@ async def upload_file(image: Image.Image, prompt: str, room_id: str, image_key:
|
|
| 374 |
filename = f"{date}-{id}-{image_key}-{prompt_slug}.webp"
|
| 375 |
timelapse_name = f"{id}.webp"
|
| 376 |
key_name = f"{room_id}/{filename}"
|
| 377 |
-
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key=key_name, ExtraArgs={
|
| 378 |
-
|
|
|
|
|
|
|
| 379 |
|
| 380 |
temp_file.close()
|
| 381 |
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
import torch
|
| 15 |
from torch import autocast
|
| 16 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 17 |
from diffusers.models import AutoencoderKL
|
| 18 |
|
| 19 |
from PIL import Image
|
|
|
|
| 108 |
|
| 109 |
def get_model():
|
| 110 |
if "inpaint" not in model:
|
| 111 |
+
inpaint = DiffusionPipeline.from_pretrained(
|
| 112 |
+
"stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float16, revision="fp16")
|
| 113 |
+
inpaint.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 114 |
+
inpaint.scheduler.config)
|
| 115 |
+
inpaint = inpaint.to("cuda")
|
|
|
|
| 116 |
model["inpaint"] = inpaint
|
| 117 |
|
| 118 |
return model["inpaint"]
|
|
|
|
| 181 |
guidance_scale=guidance,
|
| 182 |
)
|
| 183 |
image = output["images"][0]
|
| 184 |
+
is_nsfw = False
|
| 185 |
+
if "nsfw_content_detected" in output:
|
| 186 |
+
is_nsfw = output["nsfw_content_detected"][0]
|
| 187 |
image_url = {}
|
| 188 |
|
| 189 |
if not is_nsfw:
|
|
|
|
| 375 |
filename = f"{date}-{id}-{image_key}-{prompt_slug}.webp"
|
| 376 |
timelapse_name = f"{id}.webp"
|
| 377 |
key_name = f"{room_id}/{filename}"
|
| 378 |
+
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key=key_name, ExtraArgs={
|
| 379 |
+
"ContentType": "image/webp", "CacheControl": "max-age=31536000"})
|
| 380 |
+
s3.copy_object(Bucket=AWS_S3_BUCKET_NAME,
|
| 381 |
+
CopySource=f"{AWS_S3_BUCKET_NAME}/{key_name}", Key=f"timelapse/{room_id}/{timelapse_name}")
|
| 382 |
|
| 383 |
temp_file.close()
|
| 384 |
|