Spaces:
Runtime error
Runtime error
| namespace { | |
| static std::vector<double> kDistance2Similarity; | |
| void init_kDistance2Similarity() { | |
| double base[11] = {1.0, 0.99, 0.96, 0.83, 0.38, 0.11, 0.02, 0.005, 0.0006, 0.0001, 0}; | |
| int length = (PatchDistanceMetric::kDistanceScale + 1); | |
| kDistance2Similarity.resize(length); | |
| for (int i = 0; i < length; ++i) { | |
| double t = (double) i / length; | |
| int j = (int) (100 * t); | |
| int k = j + 1; | |
| double vj = (j < 11) ? base[j] : 0; | |
| double vk = (k < 11) ? base[k] : 0; | |
| kDistance2Similarity[i] = vj + (100 * t - j) * (vk - vj); | |
| } | |
| } | |
| inline void _weighted_copy(const MaskedImage &source, int ys, int xs, cv::Mat &target, int yt, int xt, double weight) { | |
| if (source.is_masked(ys, xs)) return; | |
| if (source.is_globally_masked(ys, xs)) return; | |
| auto source_ptr = source.get_image(ys, xs); | |
| auto target_ptr = target.ptr<double>(yt, xt); | |
| for (int c = 0; c < 3; ++c) | |
| target_ptr[c] += static_cast<double>(source_ptr[c]) * weight; | |
| target_ptr[3] += weight; | |
| } | |
| } | |
| /** | |
| * This algorithme uses a version proposed by Xavier Philippeau. | |
| */ | |
| Inpainting::Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric *metric) | |
| : m_initial(image, mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() { | |
| _initialize_pyramid(); | |
| } | |
| Inpainting::Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric *metric) | |
| : m_initial(image, mask, global_mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() { | |
| _initialize_pyramid(); | |
| } | |
| void Inpainting::_initialize_pyramid() { | |
| auto source = m_initial; | |
| m_pyramid.push_back(source); | |
| while (source.size().height > m_distance_metric->patch_size() && source.size().width > m_distance_metric->patch_size()) { | |
| source = source.downsample(); | |
| m_pyramid.push_back(source); | |
| } | |
| if (kDistance2Similarity.size() == 0) { | |
| init_kDistance2Similarity(); | |
| } | |
| } | |
| cv::Mat Inpainting::run(bool verbose, bool verbose_visualize, unsigned int random_seed) { | |
| srand(random_seed); | |
| const int nr_levels = m_pyramid.size(); | |
| MaskedImage source, target; | |
| for (int level = nr_levels - 1; level >= 0; --level) { | |
| if (verbose) std::cerr << "Inpainting level: " << level << std::endl; | |
| source = m_pyramid[level]; | |
| if (level == nr_levels - 1) { | |
| target = source.clone(); | |
| target.clear_mask(); | |
| m_source2target = NearestNeighborField(source, target, m_distance_metric); | |
| m_target2source = NearestNeighborField(target, source, m_distance_metric); | |
| } else { | |
| m_source2target = NearestNeighborField(source, target, m_distance_metric, m_source2target); | |
| m_target2source = NearestNeighborField(target, source, m_distance_metric, m_target2source); | |
| } | |
| if (verbose) std::cerr << "Initialization done." << std::endl; | |
| if (verbose_visualize) { | |
| auto visualize_size = m_initial.size(); | |
| cv::Mat source_visualize(visualize_size, m_initial.image().type()); | |
| cv::resize(source.image(), source_visualize, visualize_size); | |
| cv::imshow("Source", source_visualize); | |
| cv::Mat target_visualize(visualize_size, m_initial.image().type()); | |
| cv::resize(target.image(), target_visualize, visualize_size); | |
| cv::imshow("Target", target_visualize); | |
| cv::waitKey(0); | |
| } | |
| target = _expectation_maximization(source, target, level, verbose); | |
| } | |
| return target.image(); | |
| } | |
| // EM-Like algorithm (see "PatchMatch" - page 6). | |
| // Returns a double sized target image (unless level = 0). | |
| MaskedImage Inpainting::_expectation_maximization(MaskedImage source, MaskedImage target, int level, bool verbose) { | |
| const int nr_iters_em = 1 + 2 * level; | |
| const int nr_iters_nnf = static_cast<int>(std::min(7, 1 + level)); | |
| const int patch_size = m_distance_metric->patch_size(); | |
| MaskedImage new_source, new_target; | |
| for (int iter_em = 0; iter_em < nr_iters_em; ++iter_em) { | |
| if (iter_em != 0) { | |
| m_source2target.set_target(new_target); | |
| m_target2source.set_source(new_target); | |
| target = new_target; | |
| } | |
| if (verbose) std::cerr << "EM Iteration: " << iter_em << std::endl; | |
| auto size = source.size(); | |
| for (int i = 0; i < size.height; ++i) { | |
| for (int j = 0; j < size.width; ++j) { | |
| if (!source.contains_mask(i, j, patch_size)) { | |
| m_source2target.set_identity(i, j); | |
| m_target2source.set_identity(i, j); | |
| } | |
| } | |
| } | |
| if (verbose) std::cerr << " NNF minimization started." << std::endl; | |
| m_source2target.minimize(nr_iters_nnf); | |
| m_target2source.minimize(nr_iters_nnf); | |
| if (verbose) std::cerr << " NNF minimization finished." << std::endl; | |
| // Instead of upsizing the final target, we build the last target from the next level source image. | |
| // Thus, the final target is less blurry (see "Space-Time Video Completion" - page 5). | |
| bool upscaled = false; | |
| if (level >= 1 && iter_em == nr_iters_em - 1) { | |
| new_source = m_pyramid[level - 1]; | |
| new_target = target.upsample(new_source.size().width, new_source.size().height, m_pyramid[level - 1].global_mask()); | |
| upscaled = true; | |
| } else { | |
| new_source = m_pyramid[level]; | |
| new_target = target.clone(); | |
| } | |
| auto vote = cv::Mat(new_target.size(), CV_64FC4); | |
| vote.setTo(cv::Scalar::all(0)); | |
| // Votes for best patch from NNF Source->Target (completeness) and Target->Source (coherence). | |
| _expectation_step(m_source2target, 1, vote, new_source, upscaled); | |
| if (verbose) std::cerr << " Expectation source to target finished." << std::endl; | |
| _expectation_step(m_target2source, 0, vote, new_source, upscaled); | |
| if (verbose) std::cerr << " Expectation target to source finished." << std::endl; | |
| // Compile votes and update pixel values. | |
| _maximization_step(new_target, vote); | |
| if (verbose) std::cerr << " Minimization step finished." << std::endl; | |
| } | |
| return new_target; | |
| } | |
| // Expectation step: vote for best estimations of each pixel. | |
| void Inpainting::_expectation_step( | |
| const NearestNeighborField &nnf, bool source2target, | |
| cv::Mat &vote, const MaskedImage &source, bool upscaled | |
| ) { | |
| auto source_size = nnf.source_size(); | |
| auto target_size = nnf.target_size(); | |
| const int patch_size = m_distance_metric->patch_size(); | |
| for (int i = 0; i < source_size.height; ++i) { | |
| for (int j = 0; j < source_size.width; ++j) { | |
| if (nnf.source().is_globally_masked(i, j)) continue; | |
| int yp = nnf.at(i, j, 0), xp = nnf.at(i, j, 1), dp = nnf.at(i, j, 2); | |
| double w = kDistance2Similarity[dp]; | |
| for (int di = -patch_size; di <= patch_size; ++di) { | |
| for (int dj = -patch_size; dj <= patch_size; ++dj) { | |
| int ys = i + di, xs = j + dj, yt = yp + di, xt = xp + dj; | |
| if (!(ys >= 0 && ys < source_size.height && xs >= 0 && xs < source_size.width)) continue; | |
| if (nnf.source().is_globally_masked(ys, xs)) continue; | |
| if (!(yt >= 0 && yt < target_size.height && xt >= 0 && xt < target_size.width)) continue; | |
| if (nnf.target().is_globally_masked(yt, xt)) continue; | |
| if (!source2target) { | |
| std::swap(ys, yt); | |
| std::swap(xs, xt); | |
| } | |
| if (upscaled) { | |
| for (int uy = 0; uy < 2; ++uy) { | |
| for (int ux = 0; ux < 2; ++ux) { | |
| _weighted_copy(source, 2 * ys + uy, 2 * xs + ux, vote, 2 * yt + uy, 2 * xt + ux, w); | |
| } | |
| } | |
| } else { | |
| _weighted_copy(source, ys, xs, vote, yt, xt, w); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| // Maximization Step: maximum likelihood of target pixel. | |
| void Inpainting::_maximization_step(MaskedImage &target, const cv::Mat &vote) { | |
| auto target_size = target.size(); | |
| for (int i = 0; i < target_size.height; ++i) { | |
| for (int j = 0; j < target_size.width; ++j) { | |
| const double *source_ptr = vote.ptr<double>(i, j); | |
| unsigned char *target_ptr = target.get_mutable_image(i, j); | |
| if (target.is_globally_masked(i, j)) { | |
| continue; | |
| } | |
| if (source_ptr[3] > 0) { | |
| unsigned char r = cv::saturate_cast<unsigned char>(source_ptr[0] / source_ptr[3]); | |
| unsigned char g = cv::saturate_cast<unsigned char>(source_ptr[1] / source_ptr[3]); | |
| unsigned char b = cv::saturate_cast<unsigned char>(source_ptr[2] / source_ptr[3]); | |
| target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b; | |
| } else { | |
| target.set_mask(i, j, 0); | |
| } | |
| } | |
| } | |
| } | |