Spaces:
Running
on
Zero
Running
on
Zero
generate qr codes and images on the fly
Browse files- app.py +102 -10
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from diffusers import (
|
| 5 |
StableDiffusionControlNetImg2ImgPipeline,
|
| 6 |
ControlNetModel,
|
|
@@ -9,6 +13,16 @@ from diffusers import (
|
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
from PIL import Image
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
controlnet = ControlNetModel.from_pretrained(
|
| 13 |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
| 14 |
)
|
|
@@ -40,6 +54,7 @@ def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
|
| 40 |
def inference(
|
| 41 |
init_image: Image.Image,
|
| 42 |
qrcode_image: Image.Image,
|
|
|
|
| 43 |
prompt: str,
|
| 44 |
negative_prompt: str,
|
| 45 |
guidance_scale: float = 10.0,
|
|
@@ -48,9 +63,37 @@ def inference(
|
|
| 48 |
seed: int = -1,
|
| 49 |
num_inference_steps: int = 30,
|
| 50 |
):
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
| 54 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 55 |
|
| 56 |
out = pipe(
|
|
@@ -58,15 +101,15 @@ def inference(
|
|
| 58 |
negative_prompt=negative_prompt,
|
| 59 |
image=init_image,
|
| 60 |
control_image=qrcode_image, # type: ignore
|
| 61 |
-
width=768,
|
| 62 |
-
height=768,
|
| 63 |
guidance_scale=float(guidance_scale),
|
| 64 |
-
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 65 |
generator=generator,
|
| 66 |
strength=float(strength),
|
| 67 |
num_inference_steps=num_inference_steps,
|
| 68 |
)
|
| 69 |
-
return out.images[0]
|
| 70 |
|
| 71 |
|
| 72 |
with gr.Blocks() as blocks:
|
|
@@ -79,13 +122,26 @@ with gr.Blocks() as blocks:
|
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
with gr.Column():
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
negative_prompt = gr.Textbox(
|
| 86 |
label="Negative Prompt",
|
| 87 |
value="ugly, disfigured, low quality, blurry, nsfw",
|
| 88 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with gr.Accordion(label="Params"):
|
| 90 |
guidance_scale = gr.Slider(
|
| 91 |
minimum=0.0,
|
|
@@ -120,6 +176,7 @@ with gr.Blocks() as blocks:
|
|
| 120 |
inputs=[
|
| 121 |
init_image,
|
| 122 |
qr_code_image,
|
|
|
|
| 123 |
prompt,
|
| 124 |
negative_prompt,
|
| 125 |
guidance_scale,
|
|
@@ -135,18 +192,53 @@ with gr.Blocks() as blocks:
|
|
| 135 |
[
|
| 136 |
"./examples/init.jpeg",
|
| 137 |
"./examples/qrcode.png",
|
|
|
|
| 138 |
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
| 139 |
"ugly, disfigured, low quality, blurry, nsfw",
|
| 140 |
10.0,
|
| 141 |
2.0,
|
| 142 |
0.8,
|
| 143 |
2313123,
|
| 144 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
],
|
| 146 |
fn=inference,
|
| 147 |
inputs=[
|
| 148 |
init_image,
|
| 149 |
qr_code_image,
|
|
|
|
| 150 |
prompt,
|
| 151 |
negative_prompt,
|
| 152 |
guidance_scale,
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
+
import qrcode
|
| 5 |
+
from gradio_client import Client
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
from diffusers import (
|
| 9 |
StableDiffusionControlNetImg2ImgPipeline,
|
| 10 |
ControlNetModel,
|
|
|
|
| 13 |
from diffusers.utils import load_image
|
| 14 |
from PIL import Image
|
| 15 |
|
| 16 |
+
|
| 17 |
+
sd_client = Client("stabilityai/stable-diffusion")
|
| 18 |
+
|
| 19 |
+
qrcode_generator = qrcode.QRCode(
|
| 20 |
+
version=1,
|
| 21 |
+
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
| 22 |
+
box_size=10,
|
| 23 |
+
border=0,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
controlnet = ControlNetModel.from_pretrained(
|
| 27 |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
| 28 |
)
|
|
|
|
| 54 |
def inference(
|
| 55 |
init_image: Image.Image,
|
| 56 |
qrcode_image: Image.Image,
|
| 57 |
+
qr_code_content: str,
|
| 58 |
prompt: str,
|
| 59 |
negative_prompt: str,
|
| 60 |
guidance_scale: float = 10.0,
|
|
|
|
| 63 |
seed: int = -1,
|
| 64 |
num_inference_steps: int = 30,
|
| 65 |
):
|
| 66 |
+
if prompt is None or prompt == "":
|
| 67 |
+
raise gr.Error("Prompt is required")
|
| 68 |
+
|
| 69 |
+
if qrcode_image is None and qr_code_content is None:
|
| 70 |
+
raise gr.Error("QR Code Image or QR Code Content is required")
|
| 71 |
+
|
| 72 |
+
if init_image is None:
|
| 73 |
+
print("Generating random image from prompt using Stable Diffusion")
|
| 74 |
+
# generate image from prompt
|
| 75 |
+
img_dir = sd_client.predict(prompt, negative_prompt, 7, fn_index=1)
|
| 76 |
+
images = Path(img_dir).rglob("*.jpg")
|
| 77 |
+
init_image = Image.open(next(images))
|
| 78 |
+
|
| 79 |
+
if qr_code_content is not None or qr_code_content != "":
|
| 80 |
+
print("Generating QR Code from content")
|
| 81 |
+
qr = qrcode.QRCode(
|
| 82 |
+
version=1,
|
| 83 |
+
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
| 84 |
+
box_size=10,
|
| 85 |
+
border=4,
|
| 86 |
+
)
|
| 87 |
+
qr.add_data(qr_code_content)
|
| 88 |
+
qr.make(fit=True)
|
| 89 |
+
|
| 90 |
+
qrcode_image = qr.make_image(fill_color="black", back_color="white")
|
| 91 |
+
qrcode_image = resize_for_condition_image(qrcode_image, 768)
|
| 92 |
+
else:
|
| 93 |
+
print("Using QR Code Image")
|
| 94 |
+
qrcode_image = resize_for_condition_image(qrcode_image, 768)
|
| 95 |
|
| 96 |
+
init_image = resize_for_condition_image(init_image, 768)
|
| 97 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 98 |
|
| 99 |
out = pipe(
|
|
|
|
| 101 |
negative_prompt=negative_prompt,
|
| 102 |
image=init_image,
|
| 103 |
control_image=qrcode_image, # type: ignore
|
| 104 |
+
width=768, # type: ignore
|
| 105 |
+
height=768, # type: ignore
|
| 106 |
guidance_scale=float(guidance_scale),
|
| 107 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
|
| 108 |
generator=generator,
|
| 109 |
strength=float(strength),
|
| 110 |
num_inference_steps=num_inference_steps,
|
| 111 |
)
|
| 112 |
+
return out.images[0] # type: ignore
|
| 113 |
|
| 114 |
|
| 115 |
with gr.Blocks() as blocks:
|
|
|
|
| 122 |
|
| 123 |
with gr.Row():
|
| 124 |
with gr.Column():
|
| 125 |
+
qr_code_content = gr.Textbox(
|
| 126 |
+
label="QR Code Content",
|
| 127 |
+
info="QR Code Content or URL",
|
| 128 |
+
value="",
|
| 129 |
+
)
|
| 130 |
+
prompt = gr.Textbox(
|
| 131 |
+
label="Prompt",
|
| 132 |
+
info="Prompt is required. If init image is not provided, then it will be generated from prompt using Stable Diffusion 2.1",
|
| 133 |
+
)
|
| 134 |
negative_prompt = gr.Textbox(
|
| 135 |
label="Negative Prompt",
|
| 136 |
value="ugly, disfigured, low quality, blurry, nsfw",
|
| 137 |
)
|
| 138 |
+
init_image = gr.Image(label="Init Image (Optional)", type="pil")
|
| 139 |
+
|
| 140 |
+
qr_code_image = gr.Image(
|
| 141 |
+
label="QR Code Image (Optional)",
|
| 142 |
+
type="pil",
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
with gr.Accordion(label="Params"):
|
| 146 |
guidance_scale = gr.Slider(
|
| 147 |
minimum=0.0,
|
|
|
|
| 176 |
inputs=[
|
| 177 |
init_image,
|
| 178 |
qr_code_image,
|
| 179 |
+
qr_code_content,
|
| 180 |
prompt,
|
| 181 |
negative_prompt,
|
| 182 |
guidance_scale,
|
|
|
|
| 192 |
[
|
| 193 |
"./examples/init.jpeg",
|
| 194 |
"./examples/qrcode.png",
|
| 195 |
+
"",
|
| 196 |
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
| 197 |
"ugly, disfigured, low quality, blurry, nsfw",
|
| 198 |
10.0,
|
| 199 |
2.0,
|
| 200 |
0.8,
|
| 201 |
2313123,
|
| 202 |
+
],
|
| 203 |
+
[
|
| 204 |
+
"./examples/init.jpeg",
|
| 205 |
+
None,
|
| 206 |
+
"https://huggingface.co",
|
| 207 |
+
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
| 208 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
| 209 |
+
10.0,
|
| 210 |
+
2.0,
|
| 211 |
+
0.8,
|
| 212 |
+
2313123,
|
| 213 |
+
],
|
| 214 |
+
[
|
| 215 |
+
None,
|
| 216 |
+
None,
|
| 217 |
+
"https://huggingface.co",
|
| 218 |
+
"crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
|
| 219 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
| 220 |
+
10.0,
|
| 221 |
+
2.0,
|
| 222 |
+
0.8,
|
| 223 |
+
2313123,
|
| 224 |
+
],
|
| 225 |
+
[
|
| 226 |
+
None,
|
| 227 |
+
None,
|
| 228 |
+
"https://huggingface.co",
|
| 229 |
+
"A flying cat over a jungle",
|
| 230 |
+
"ugly, disfigured, low quality, blurry, nsfw",
|
| 231 |
+
10.0,
|
| 232 |
+
2.0,
|
| 233 |
+
0.8,
|
| 234 |
+
2313123,
|
| 235 |
+
],
|
| 236 |
],
|
| 237 |
fn=inference,
|
| 238 |
inputs=[
|
| 239 |
init_image,
|
| 240 |
qr_code_image,
|
| 241 |
+
qr_code_content,
|
| 242 |
prompt,
|
| 243 |
negative_prompt,
|
| 244 |
guidance_scale,
|
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ accelerate
|
|
| 4 |
torch
|
| 5 |
xformers
|
| 6 |
gradio
|
| 7 |
-
Pillow
|
|
|
|
|
|
| 4 |
torch
|
| 5 |
xformers
|
| 6 |
gradio
|
| 7 |
+
Pillow
|
| 8 |
+
qrcode
|