File size: 37,216 Bytes
ff2b8e3 ed6b6d6 ff2b8e3 ed6b6d6 ff2b8e3 ed6b6d6 ff2b8e3 ed6b6d6 ff2b8e3 ed6b6d6 ff2b8e3 ed6b6d6 ff2b8e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# python3.7
"""Contains the implementation of generator described in StyleGAN.
Paper: https://arxiv.org/pdf/1812.04948.pdf
Official TensorFlow implementation: https://github.com/NVlabs/stylegan
"""
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .sync_op import all_gather
from huggingface_hub import PyTorchModelHubMixin, PYTORCH_WEIGHTS_NAME, hf_hub_download
__all__ = ['StyleGANGenerator']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# Initial resolution.
_INIT_RES = 4
# Fused-scale options allowed.
_FUSED_SCALE_ALLOWED = [True, False, 'auto']
# Minimal resolution for `auto` fused-scale strategy.
_AUTO_FUSED_SCALE_MIN_RES = 128
# Default gain factor for weight scaling.
_WSCALE_GAIN = np.sqrt(2.0)
_STYLEMOD_WSCALE_GAIN = 1.0
class StyleGANGenerator(nn.Module, PyTorchModelHubMixin):
"""Defines the generator network in StyleGAN.
NOTE: The synthesized images are with `RGB` channel order and pixel range
[-1, 1].
Settings for the mapping network:
(1) z_space_dim: Dimension of the input latent space, Z. (default: 512)
(2) w_space_dim: Dimension of the outout latent space, W. (default: 512)
(3) label_size: Size of the additional label for conditional generation.
(default: 0)
(4)mapping_layers: Number of layers of the mapping network. (default: 8)
(5) mapping_fmaps: Number of hidden channels of the mapping network.
(default: 512)
(6) mapping_lr_mul: Learning rate multiplier for the mapping network.
(default: 0.01)
(7) repeat_w: Repeat w-code for different layers.
Settings for the synthesis network:
(1) resolution: The resolution of the output image.
(2) image_channels: Number of channels of the output image. (default: 3)
(3) final_tanh: Whether to use `tanh` to control the final pixel range.
(default: False)
(4) const_input: Whether to use a constant in the first convolutional layer.
(default: True)
(5) fused_scale: Whether to fused `upsample` and `conv2d` together,
resulting in `conv2d_transpose`. (default: `auto`)
(6) use_wscale: Whether to use weight scaling. (default: True)
(7) fmaps_base: Factor to control number of feature maps for each layer.
(default: 16 << 10)
(8) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
"""
def __init__(self,
resolution,
z_space_dim=512,
w_space_dim=512,
label_size=0,
mapping_layers=8,
mapping_fmaps=512,
mapping_lr_mul=0.01,
repeat_w=True,
image_channels=3,
final_tanh=False,
const_input=True,
fused_scale='auto',
use_wscale=True,
fmaps_base=16 << 10,
fmaps_max=512,
**kwargs):
"""Initializes with basic settings.
Raises:
ValueError: If the `resolution` is not supported, or `fused_scale`
is not supported.
"""
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
if fused_scale not in _FUSED_SCALE_ALLOWED:
raise ValueError(f'Invalid fused-scale option: `{fused_scale}`!\n'
f'Options allowed: {_FUSED_SCALE_ALLOWED}.')
self.init_res = _INIT_RES
self.resolution = resolution
self.z_space_dim = z_space_dim
self.w_space_dim = w_space_dim
self.label_size = label_size
self.mapping_layers = mapping_layers
self.mapping_fmaps = mapping_fmaps
self.mapping_lr_mul = mapping_lr_mul
self.repeat_w = repeat_w
self.image_channels = image_channels
self.final_tanh = final_tanh
self.const_input = const_input
self.fused_scale = fused_scale
self.use_wscale = use_wscale
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.config = kwargs.pop("config", None)
self.num_layers = int(np.log2(self.resolution // self.init_res * 2)) * 2
if self.repeat_w:
self.mapping_space_dim = self.w_space_dim
else:
self.mapping_space_dim = self.w_space_dim * self.num_layers
self.mapping = MappingModule(input_space_dim=self.z_space_dim,
hidden_space_dim=self.mapping_fmaps,
final_space_dim=self.mapping_space_dim,
label_size=self.label_size,
num_layers=self.mapping_layers,
use_wscale=self.use_wscale,
lr_mul=self.mapping_lr_mul)
self.truncation = TruncationModule(w_space_dim=self.w_space_dim,
num_layers=self.num_layers,
repeat_w=self.repeat_w)
self.synthesis = SynthesisModule(resolution=self.resolution,
init_resolution=self.init_res,
w_space_dim=self.w_space_dim,
image_channels=self.image_channels,
final_tanh=self.final_tanh,
const_input=self.const_input,
fused_scale=self.fused_scale,
use_wscale=self.use_wscale,
fmaps_base=self.fmaps_base,
fmaps_max=self.fmaps_max)
self.pth_to_tf_var_mapping = {}
for key, val in self.mapping.pth_to_tf_var_mapping.items():
self.pth_to_tf_var_mapping[f'mapping.{key}'] = val
for key, val in self.truncation.pth_to_tf_var_mapping.items():
self.pth_to_tf_var_mapping[f'truncation.{key}'] = val
for key, val in self.synthesis.pth_to_tf_var_mapping.items():
self.pth_to_tf_var_mapping[f'synthesis.{key}'] = val
def forward(self,
z,
label=None,
lod=None,
w_moving_decay=0.995,
style_mixing_prob=0.9,
trunc_psi=None,
trunc_layers=None,
randomize_noise=False,
**_unused_kwargs):
mapping_results = self.mapping(z, label)
w = mapping_results['w']
if self.training and w_moving_decay < 1:
batch_w_avg = all_gather(w).mean(dim=0)
self.truncation.w_avg.copy_(
self.truncation.w_avg * w_moving_decay +
batch_w_avg * (1 - w_moving_decay))
if self.training and style_mixing_prob > 0:
new_z = torch.randn_like(z)
new_w = self.mapping(new_z, label)['w']
lod = self.synthesis.lod.cpu().tolist() if lod is None else lod
current_layers = self.num_layers - int(lod) * 2
if np.random.uniform() < style_mixing_prob:
mixing_cutoff = np.random.randint(1, current_layers)
w = self.truncation(w)
new_w = self.truncation(new_w)
w[:, mixing_cutoff:] = new_w[:, mixing_cutoff:]
wp = self.truncation(w, trunc_psi, trunc_layers)
synthesis_results = self.synthesis(wp, lod, randomize_noise)
return {**mapping_results, **synthesis_results}
@classmethod
def _from_pretrained(
cls,
model_id,
revision,
cache_dir,
force_download,
proxies,
resume_download,
local_files_only,
use_auth_token,
map_location="cpu",
strict=False,
**model_kwargs,
):
"""
Overwrite this method in case you wish to initialize your model in a
different way.
"""
map_location = torch.device(map_location)
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, PYTORCH_WEIGHTS_NAME)
else:
model_file = hf_hub_download(
repo_id=model_id,
filename=PYTORCH_WEIGHTS_NAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
)
pretrained = torch.load(model_file, map_location=map_location)
return pretrained
class MappingModule(nn.Module):
"""Implements the latent space mapping module.
Basically, this module executes several dense layers in sequence.
"""
def __init__(self,
input_space_dim=512,
hidden_space_dim=512,
final_space_dim=512,
label_size=0,
num_layers=8,
normalize_input=True,
use_wscale=True,
lr_mul=0.01):
super().__init__()
self.input_space_dim = input_space_dim
self.hidden_space_dim = hidden_space_dim
self.final_space_dim = final_space_dim
self.label_size = label_size
self.num_layers = num_layers
self.normalize_input = normalize_input
self.use_wscale = use_wscale
self.lr_mul = lr_mul
self.norm = PixelNormLayer() if self.normalize_input else nn.Identity()
self.pth_to_tf_var_mapping = {}
for i in range(num_layers):
dim_mul = 2 if label_size else 1
in_channels = (input_space_dim * dim_mul if i == 0 else
hidden_space_dim)
out_channels = (final_space_dim if i == (num_layers - 1) else
hidden_space_dim)
self.add_module(f'dense{i}',
DenseBlock(in_channels=in_channels,
out_channels=out_channels,
use_wscale=self.use_wscale,
lr_mul=self.lr_mul))
self.pth_to_tf_var_mapping[f'dense{i}.weight'] = f'Dense{i}/weight'
self.pth_to_tf_var_mapping[f'dense{i}.bias'] = f'Dense{i}/bias'
if label_size:
self.label_weight = nn.Parameter(
torch.randn(label_size, input_space_dim))
self.pth_to_tf_var_mapping[f'label_weight'] = f'LabelConcat/weight'
def forward(self, z, label=None):
if z.ndim != 2 or z.shape[1] != self.input_space_dim:
raise ValueError(f'Input latent code should be with shape '
f'[batch_size, input_dim], where '
f'`input_dim` equals to {self.input_space_dim}!\n'
f'But `{z.shape}` is received!')
if self.label_size:
if label is None:
raise ValueError(f'Model requires an additional label '
f'(with size {self.label_size}) as input, '
f'but no label is received!')
if label.ndim != 2 or label.shape != (z.shape[0], self.label_size):
raise ValueError(f'Input label should be with shape '
f'[batch_size, label_size], where '
f'`batch_size` equals to that of '
f'latent codes ({z.shape[0]}) and '
f'`label_size` equals to {self.label_size}!\n'
f'But `{label.shape}` is received!')
embedding = torch.matmul(label, self.label_weight)
z = torch.cat((z, embedding), dim=1)
z = self.norm(z)
w = z
for i in range(self.num_layers):
w = self.__getattr__(f'dense{i}')(w)
results = {
'z': z,
'label': label,
'w': w,
}
if self.label_size:
results['embedding'] = embedding
return results
class TruncationModule(nn.Module):
"""Implements the truncation module.
Truncation is executed as follows:
For layers in range [0, truncation_layers), the truncated w-code is computed
as
w_new = w_avg + (w - w_avg) * truncation_psi
To disable truncation, please set
(1) truncation_psi = 1.0 (None) OR
(2) truncation_layers = 0 (None)
NOTE: The returned tensor is layer-wise style codes.
"""
def __init__(self, w_space_dim, num_layers, repeat_w=True):
super().__init__()
self.num_layers = num_layers
self.w_space_dim = w_space_dim
self.repeat_w = repeat_w
if self.repeat_w:
self.register_buffer('w_avg', torch.zeros(w_space_dim))
else:
self.register_buffer('w_avg', torch.zeros(num_layers * w_space_dim))
self.pth_to_tf_var_mapping = {'w_avg': 'dlatent_avg'}
def forward(self, w, trunc_psi=None, trunc_layers=None):
if w.ndim == 2:
if self.repeat_w and w.shape[1] == self.w_space_dim:
w = w.view(-1, 1, self.w_space_dim)
wp = w.repeat(1, self.num_layers, 1)
else:
assert w.shape[1] == self.w_space_dim * self.num_layers
wp = w.view(-1, self.num_layers, self.w_space_dim)
else:
wp = w
assert wp.ndim == 3
assert wp.shape[1:] == (self.num_layers, self.w_space_dim)
trunc_psi = 1.0 if trunc_psi is None else trunc_psi
trunc_layers = 0 if trunc_layers is None else trunc_layers
if trunc_psi < 1.0 and trunc_layers > 0:
layer_idx = np.arange(self.num_layers).reshape(1, -1, 1)
coefs = np.ones_like(layer_idx, dtype=np.float32)
coefs[layer_idx < trunc_layers] *= trunc_psi
coefs = torch.from_numpy(coefs).to(wp)
w_avg = self.w_avg.view(1, -1, self.w_space_dim)
wp = w_avg + (wp - w_avg) * coefs
return wp
class SynthesisModule(nn.Module):
"""Implements the image synthesis module.
Basically, this module executes several convolutional layers in sequence.
"""
def __init__(self,
resolution=1024,
init_resolution=4,
w_space_dim=512,
image_channels=3,
final_tanh=False,
const_input=True,
fused_scale='auto',
use_wscale=True,
fmaps_base=16 << 10,
fmaps_max=512):
super().__init__()
self.init_res = init_resolution
self.init_res_log2 = int(np.log2(self.init_res))
self.resolution = resolution
self.final_res_log2 = int(np.log2(self.resolution))
self.w_space_dim = w_space_dim
self.image_channels = image_channels
self.final_tanh = final_tanh
self.const_input = const_input
self.fused_scale = fused_scale
self.use_wscale = use_wscale
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2
# Level of detail (used for progressive training).
self.register_buffer('lod', torch.zeros(()))
self.pth_to_tf_var_mapping = {'lod': 'lod'}
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
res = 2 ** res_log2
block_idx = res_log2 - self.init_res_log2
# First convolution layer for each resolution.
layer_name = f'layer{2 * block_idx}'
if res == self.init_res:
if self.const_input:
self.add_module(layer_name,
ConvBlock(in_channels=self.get_nf(res),
out_channels=self.get_nf(res),
resolution=self.init_res,
w_space_dim=self.w_space_dim,
position='const_init',
use_wscale=self.use_wscale))
tf_layer_name = 'Const'
self.pth_to_tf_var_mapping[f'{layer_name}.const'] = (
f'{res}x{res}/{tf_layer_name}/const')
else:
self.add_module(layer_name,
ConvBlock(in_channels=self.w_space_dim,
out_channels=self.get_nf(res),
resolution=self.init_res,
w_space_dim=self.w_space_dim,
kernel_size=self.init_res,
padding=self.init_res - 1,
use_wscale=self.use_wscale))
tf_layer_name = 'Dense'
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/{tf_layer_name}/weight')
else:
if self.fused_scale == 'auto':
fused_scale = (res >= _AUTO_FUSED_SCALE_MIN_RES)
else:
fused_scale = self.fused_scale
self.add_module(layer_name,
ConvBlock(in_channels=self.get_nf(res // 2),
out_channels=self.get_nf(res),
resolution=res,
w_space_dim=self.w_space_dim,
upsample=True,
fused_scale=fused_scale,
use_wscale=self.use_wscale))
tf_layer_name = 'Conv0_up'
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/{tf_layer_name}/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/{tf_layer_name}/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = (
f'{res}x{res}/{tf_layer_name}/StyleMod/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = (
f'{res}x{res}/{tf_layer_name}/StyleMod/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.apply_noise.weight'] = (
f'{res}x{res}/{tf_layer_name}/Noise/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.apply_noise.noise'] = (
f'noise{2 * block_idx}')
# Second convolution layer for each resolution.
layer_name = f'layer{2 * block_idx + 1}'
self.add_module(layer_name,
ConvBlock(in_channels=self.get_nf(res),
out_channels=self.get_nf(res),
resolution=res,
w_space_dim=self.w_space_dim,
use_wscale=self.use_wscale))
tf_layer_name = 'Conv' if res == self.init_res else 'Conv1'
self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
f'{res}x{res}/{tf_layer_name}/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = (
f'{res}x{res}/{tf_layer_name}/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = (
f'{res}x{res}/{tf_layer_name}/StyleMod/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = (
f'{res}x{res}/{tf_layer_name}/StyleMod/bias')
self.pth_to_tf_var_mapping[f'{layer_name}.apply_noise.weight'] = (
f'{res}x{res}/{tf_layer_name}/Noise/weight')
self.pth_to_tf_var_mapping[f'{layer_name}.apply_noise.noise'] = (
f'noise{2 * block_idx + 1}')
# Output convolution layer for each resolution.
self.add_module(f'output{block_idx}',
ConvBlock(in_channels=self.get_nf(res),
out_channels=self.image_channels,
resolution=res,
w_space_dim=self.w_space_dim,
position='last',
kernel_size=1,
padding=0,
use_wscale=self.use_wscale,
wscale_gain=1.0,
activation_type='linear'))
self.pth_to_tf_var_mapping[f'output{block_idx}.weight'] = (
f'ToRGB_lod{self.final_res_log2 - res_log2}/weight')
self.pth_to_tf_var_mapping[f'output{block_idx}.bias'] = (
f'ToRGB_lod{self.final_res_log2 - res_log2}/bias')
self.upsample = UpsamplingLayer()
self.final_activate = nn.Tanh() if final_tanh else nn.Identity()
def get_nf(self, res):
"""Gets number of feature maps according to current resolution."""
return min(self.fmaps_base // res, self.fmaps_max)
def forward(self, wp, lod=None, randomize_noise=False):
if wp.ndim != 3 or wp.shape[1:] != (self.num_layers, self.w_space_dim):
raise ValueError(f'Input tensor should be with shape '
f'[batch_size, num_layers, w_space_dim], where '
f'`num_layers` equals to {self.num_layers}, and '
f'`w_space_dim` equals to {self.w_space_dim}!\n'
f'But `{wp.shape}` is received!')
lod = self.lod.cpu().tolist() if lod is None else lod
if lod + self.init_res_log2 > self.final_res_log2:
raise ValueError(f'Maximum level-of-detail (lod) is '
f'{self.final_res_log2 - self.init_res_log2}, '
f'but `{lod}` is received!')
results = {'wp': wp}
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
current_lod = self.final_res_log2 - res_log2
if lod < current_lod + 1:
block_idx = res_log2 - self.init_res_log2
if block_idx == 0:
if self.const_input:
x, style = self.layer0(None, wp[:, 0], randomize_noise)
else:
x = wp[:, 0].view(-1, self.w_space_dim, 1, 1)
x, style = self.layer0(x, wp[:, 0], randomize_noise)
else:
x, style = self.__getattr__(f'layer{2 * block_idx}')(
x, wp[:, 2 * block_idx])
results[f'style{2 * block_idx:02d}'] = style
x, style = self.__getattr__(f'layer{2 * block_idx + 1}')(
x, wp[:, 2 * block_idx + 1])
results[f'style{2 * block_idx + 1:02d}'] = style
if current_lod - 1 < lod <= current_lod:
image = self.__getattr__(f'output{block_idx}')(x, None)
elif current_lod < lod < current_lod + 1:
alpha = np.ceil(lod) - lod
image = (self.__getattr__(f'output{block_idx}')(x, None) * alpha
+ self.upsample(image) * (1 - alpha))
elif lod >= current_lod + 1:
image = self.upsample(image)
results['image'] = self.final_activate(image)
return results
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, epsilon=1e-8):
super().__init__()
self.eps = epsilon
def forward(self, x):
norm = torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.eps)
return x / norm
class InstanceNormLayer(nn.Module):
"""Implements instance normalization layer."""
def __init__(self, epsilon=1e-8):
super().__init__()
self.eps = epsilon
def forward(self, x):
if x.ndim != 4:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, channel, height, width], '
f'but `{x.shape}` is received!')
x = x - torch.mean(x, dim=[2, 3], keepdim=True)
norm = torch.sqrt(
torch.mean(x ** 2, dim=[2, 3], keepdim=True) + self.eps)
return x / norm
class UpsamplingLayer(nn.Module):
"""Implements the upsampling layer.
Basically, this layer can be used to upsample feature maps with nearest
neighbor interpolation.
"""
def __init__(self, scale_factor=2):
super().__init__()
self.scale_factor = scale_factor
def forward(self, x):
if self.scale_factor <= 1:
return x
return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
class Blur(torch.autograd.Function):
"""Defines blur operation with customized gradient computation."""
@staticmethod
def forward(ctx, x, kernel):
ctx.save_for_backward(kernel)
y = F.conv2d(input=x,
weight=kernel,
bias=None,
stride=1,
padding=1,
groups=x.shape[1])
return y
@staticmethod
def backward(ctx, dy):
kernel, = ctx.saved_tensors
dx = F.conv2d(input=dy,
weight=kernel.flip((2, 3)),
bias=None,
stride=1,
padding=1,
groups=dy.shape[1])
return dx, None, None
class BlurLayer(nn.Module):
"""Implements the blur layer."""
def __init__(self,
channels,
kernel=(1, 2, 1),
normalize=True):
super().__init__()
kernel = np.array(kernel, dtype=np.float32).reshape(1, -1)
kernel = kernel.T.dot(kernel)
if normalize:
kernel /= np.sum(kernel)
kernel = kernel[np.newaxis, np.newaxis]
kernel = np.tile(kernel, [channels, 1, 1, 1])
self.register_buffer('kernel', torch.from_numpy(kernel))
def forward(self, x):
return Blur.apply(x, self.kernel)
class NoiseApplyingLayer(nn.Module):
"""Implements the noise applying layer."""
def __init__(self, resolution, channels):
super().__init__()
self.res = resolution
self.register_buffer('noise', torch.randn(1, 1, self.res, self.res))
self.weight = nn.Parameter(torch.zeros(channels))
def forward(self, x, randomize_noise=False):
if x.ndim != 4:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, channel, height, width], '
f'but `{x.shape}` is received!')
if randomize_noise:
noise = torch.randn(x.shape[0], 1, self.res, self.res).to(x)
else:
noise = self.noise
return x + noise * self.weight.view(1, -1, 1, 1)
class StyleModLayer(nn.Module):
"""Implements the style modulation layer."""
def __init__(self,
w_space_dim,
out_channels,
use_wscale=True):
super().__init__()
self.w_space_dim = w_space_dim
self.out_channels = out_channels
weight_shape = (self.out_channels * 2, self.w_space_dim)
wscale = _STYLEMOD_WSCALE_GAIN / np.sqrt(self.w_space_dim)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape))
self.wscale = wscale
else:
self.weight = nn.Parameter(torch.randn(*weight_shape) * wscale)
self.wscale = 1.0
self.bias = nn.Parameter(torch.zeros(self.out_channels * 2))
def forward(self, x, w):
if w.ndim != 2 or w.shape[1] != self.w_space_dim:
raise ValueError(f'The input tensor should be with shape '
f'[batch_size, w_space_dim], where '
f'`w_space_dim` equals to {self.w_space_dim}!\n'
f'But `{w.shape}` is received!')
style = F.linear(w, weight=self.weight * self.wscale, bias=self.bias)
style_split = style.view(-1, 2, self.out_channels, 1, 1)
x = x * (style_split[:, 0] + 1) + style_split[:, 1]
return x, style
class ConvBlock(nn.Module):
"""Implements the normal convolutional block.
Basically, this block executes upsampling layer (if needed), convolutional
layer, blurring layer, noise applying layer, activation layer, instance
normalization layer, and style modulation layer in sequence.
"""
def __init__(self,
in_channels,
out_channels,
resolution,
w_space_dim,
position=None,
kernel_size=3,
stride=1,
padding=1,
add_bias=True,
upsample=False,
fused_scale=False,
use_wscale=True,
wscale_gain=_WSCALE_GAIN,
lr_mul=1.0,
activation_type='lrelu'):
"""Initializes with block settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
resolution: Resolution of the output tensor.
w_space_dim: Dimension of W space for style modulation.
position: Position of the layer. `const_init`, `last` would lead to
different behavior. (default: None)
kernel_size: Size of the convolutional kernels. (default: 3)
stride: Stride parameter for convolution operation. (default: 1)
padding: Padding parameter for convolution operation. (default: 1)
add_bias: Whether to add bias onto the convolutional result.
(default: True)
upsample: Whether to upsample the input tensor before convolution.
(default: False)
fused_scale: Whether to fused `upsample` and `conv2d` together,
resulting in `conv2d_transpose`. (default: False)
use_wscale: Whether to use weight scaling. (default: True)
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
activation_type: Type of activation. Support `linear` and `lrelu`.
(default: `lrelu`)
Raises:
NotImplementedError: If the `activation_type` is not supported.
"""
super().__init__()
self.position = position
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
self.bscale = lr_mul
else:
self.bias = None
if activation_type == 'linear':
self.activate = nn.Identity()
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
raise NotImplementedError(f'Not implemented activation function: '
f'`{activation_type}`!')
if self.position != 'last':
self.apply_noise = NoiseApplyingLayer(resolution, out_channels)
self.normalize = InstanceNormLayer()
self.style = StyleModLayer(w_space_dim, out_channels, use_wscale)
if self.position == 'const_init':
self.const = nn.Parameter(
torch.ones(1, in_channels, resolution, resolution))
return
self.blur = BlurLayer(out_channels) if upsample else nn.Identity()
if upsample and not fused_scale:
self.upsample = UpsamplingLayer()
else:
self.upsample = nn.Identity()
if upsample and fused_scale:
self.use_conv2d_transpose = True
self.stride = 2
self.padding = 1
else:
self.use_conv2d_transpose = False
self.stride = stride
self.padding = padding
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size * in_channels
wscale = wscale_gain / np.sqrt(fan_in)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
def forward(self, x, w, randomize_noise=False):
if self.position != 'const_init':
x = self.upsample(x)
weight = self.weight * self.wscale
if self.use_conv2d_transpose:
weight = F.pad(weight, (1, 1, 1, 1, 0, 0, 0, 0), 'constant', 0)
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] +
weight[:, :, 1:, :-1] + weight[:, :, :-1, :-1])
weight = weight.permute(1, 0, 2, 3)
x = F.conv_transpose2d(x,
weight=weight,
bias=None,
stride=self.stride,
padding=self.padding)
else:
x = F.conv2d(x,
weight=weight,
bias=None,
stride=self.stride,
padding=self.padding)
x = self.blur(x)
else:
x = self.const.repeat(w.shape[0], 1, 1, 1)
bias = self.bias * self.bscale if self.bias is not None else None
if self.position == 'last':
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
return x
x = self.apply_noise(x, randomize_noise)
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
x = self.activate(x)
x = self.normalize(x)
x, style = self.style(x, w)
return x, style
class DenseBlock(nn.Module):
"""Implements the dense block.
Basically, this block executes fully-connected layer and activation layer.
"""
def __init__(self,
in_channels,
out_channels,
add_bias=True,
use_wscale=True,
wscale_gain=_WSCALE_GAIN,
lr_mul=1.0,
activation_type='lrelu'):
"""Initializes with block settings.
Args:
in_channels: Number of channels of the input tensor.
out_channels: Number of channels of the output tensor.
add_bias: Whether to add bias onto the fully-connected result.
(default: True)
use_wscale: Whether to use weight scaling. (default: True)
wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
activation_type: Type of activation. Support `linear` and `lrelu`.
(default: `lrelu`)
Raises:
NotImplementedError: If the `activation_type` is not supported.
"""
super().__init__()
weight_shape = (out_channels, in_channels)
wscale = wscale_gain / np.sqrt(in_channels)
if use_wscale:
self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
self.wscale = wscale * lr_mul
else:
self.weight = nn.Parameter(
torch.randn(*weight_shape) * wscale / lr_mul)
self.wscale = lr_mul
if add_bias:
self.bias = nn.Parameter(torch.zeros(out_channels))
self.bscale = lr_mul
else:
self.bias = None
if activation_type == 'linear':
self.activate = nn.Identity()
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
raise NotImplementedError(f'Not implemented activation function: '
f'`{activation_type}`!')
def forward(self, x):
if x.ndim != 2:
x = x.view(x.shape[0], -1)
bias = self.bias * self.bscale if self.bias is not None else None
x = F.linear(x, weight=self.weight * self.wscale, bias=bias)
x = self.activate(x)
return x
|