File size: 3,117 Bytes
6282546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
This file defines the core research contribution
"""
import torch
from torch import nn

from models.encoders import psp_encoders
from models.stylegan2.model import Generator

#from configs.paths_config import model_paths


def get_keys(d, name):
	if 'state_dict' in d:
		d = d['state_dict']
	d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
	return d_filt


class pSp(nn.Module):

	def __init__(self, opts):
		super(pSp, self).__init__()
		self.set_opts(opts)
		# Define architecture
		self.encoder = self.set_encoder()
		self.decoder = Generator(1024, 512, 8)
		self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
		# Load weights if needed
		self.load_weights()

	def set_encoder(self):
		if self.opts.encoder_type == 'GradualStyleEncoder':
			encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts)
		elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW':
			encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts)
		elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus':
			encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts)
		else:
			raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type))
		return encoder

	def load_weights(self):
		print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path))
		ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
		self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True)
		self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True)
		self.__load_latent_avg(ckpt)

	def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True,
	            inject_latent=None, return_latents=False, alpha=None):
		if input_code:
			codes = x
		else:
			codes = self.encoder(x)
			# normalize with respect to the center of an average face
			if self.opts.start_from_latent_avg:
				if self.opts.learn_in_w:
					codes = codes + self.latent_avg.repeat(codes.shape[0], 1)
				else:
					codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)


		if latent_mask is not None:
			for i in latent_mask:
				if inject_latent is not None:
					if alpha is not None:
						codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
					else:
						codes[:, i] = inject_latent[:, i]
				else:
					codes[:, i] = 0

		input_is_latent = not input_code
		images, result_latent = self.decoder([codes],
		                                     input_is_latent=input_is_latent,
		                                     randomize_noise=randomize_noise,
		                                     return_latents=return_latents)

		if resize:
			images = self.face_pool(images)

		if return_latents:
			return images, result_latent
		else:
			return images

	def set_opts(self, opts):
		self.opts = opts

	def __load_latent_avg(self, ckpt, repeat=None):
		if 'latent_avg' in ckpt:
			self.latent_avg = ckpt['latent_avg'].to(self.opts.device)
			if repeat is not None:
				self.latent_avg = self.latent_avg.repeat(repeat, 1)
		else:
			self.latent_avg = None