Spaces:
Runtime error
Runtime error
Upload StyleMix.py
Browse files- StyleMix.py +70 -0
StyleMix.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.utils.data.dataloader import DataLoader
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from torchvision import utils as vutils
|
| 8 |
+
|
| 9 |
+
from models import Generator
|
| 10 |
+
from utils import copy_G_params, load_params
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_early_features(net, noise):
|
| 15 |
+
with torch.no_grad():
|
| 16 |
+
feat_4 = net._init(noise)
|
| 17 |
+
feat_8 = net._upsample_8(feat_4)
|
| 18 |
+
feat_16 = net._upsample_16(feat_8)
|
| 19 |
+
feat_32 = net._upsample_32(feat_16)
|
| 20 |
+
feat_64 = net._upsample_64(feat_32)
|
| 21 |
+
return feat_8, feat_16, feat_32, feat_64
|
| 22 |
+
|
| 23 |
+
def get_late_features(net, feat_64, feat_8, feat_16, feat_32):
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
feat_128 = net._upsample_128(feat_64)
|
| 26 |
+
feat_128 = net._sle_128(feat_8, feat_128)
|
| 27 |
+
|
| 28 |
+
feat_256 = net._upsample_256(feat_128)
|
| 29 |
+
feat_256 = net._sle_256(feat_16, feat_256)
|
| 30 |
+
|
| 31 |
+
feat_512 = net._upsample_512(feat_256)
|
| 32 |
+
feat_512 = net._sle_512(feat_32, feat_512)
|
| 33 |
+
|
| 34 |
+
feat_1024 = net._upsample_1024(feat_512)
|
| 35 |
+
|
| 36 |
+
return net._out_1024(feat_1024)
|
| 37 |
+
|
| 38 |
+
def style_mix(model_name_or_path, bs, device):
|
| 39 |
+
_in_channels = 256
|
| 40 |
+
im_size = 1024
|
| 41 |
+
|
| 42 |
+
netG = Generator(in_channels=_in_channels, out_channels=3)
|
| 43 |
+
netG = netG.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
|
| 44 |
+
_ = netG.to(device)
|
| 45 |
+
_ = netG.eval()
|
| 46 |
+
|
| 47 |
+
avg_param_G = copy_G_params(netG)
|
| 48 |
+
load_params(netG, avg_param_G)
|
| 49 |
+
|
| 50 |
+
noise_a = torch.randn(bs, 256, 1, 1, device=device).to(device)
|
| 51 |
+
noise_b = torch.randn(bs, 256, 1, 1, device=device).to(device)
|
| 52 |
+
|
| 53 |
+
feat_8_a, feat_16_a, feat_32_a, feat_64_a = get_early_features(netG, noise_a)
|
| 54 |
+
feat_8_b, feat_16_b, feat_32_b, feat_64_b = get_early_features(netG, noise_b)
|
| 55 |
+
|
| 56 |
+
images_b = get_late_features(netG, feat_64_b, feat_8_b, feat_16_b, feat_32_b)
|
| 57 |
+
images_a = get_late_features(netG, feat_64_a, feat_8_a, feat_16_a, feat_32_a)
|
| 58 |
+
|
| 59 |
+
imgs = [ torch.ones(1, 3, im_size, im_size) ]
|
| 60 |
+
|
| 61 |
+
imgs.append(images_b.cpu())
|
| 62 |
+
for i in range(bs):
|
| 63 |
+
imgs.append(images_a[i].unsqueeze(0).cpu())
|
| 64 |
+
gimgs = get_late_features(netG, feat_64_a[i].unsqueeze(0).repeat(bs, 1, 1, 1), feat_8_b, feat_16_b, feat_32_b)
|
| 65 |
+
imgs.append(gimgs.cpu())
|
| 66 |
+
|
| 67 |
+
imgs = torch.cat(imgs)
|
| 68 |
+
# vutils.save_image(imgs.add(1).mul(0.5), 'style_mix/style_mix_2.jpg', nrow=bs+1)
|
| 69 |
+
|
| 70 |
+
return imgs
|