Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,6 +30,8 @@ import yfinance as yf
|
|
| 30 |
import pandas as pd
|
| 31 |
import nltk
|
| 32 |
from nltk.tokenize import sent_tokenize
|
|
|
|
|
|
|
| 33 |
|
| 34 |
class KeyValueExtractor:
|
| 35 |
|
|
@@ -42,6 +44,7 @@ class KeyValueExtractor:
|
|
| 42 |
pdf_file_path (str): The path to the input PDF file.
|
| 43 |
"""
|
| 44 |
self.model = "facebook/bart-large-mnli"
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
def get_url(self,keyword):
|
|
@@ -113,19 +116,34 @@ class KeyValueExtractor:
|
|
| 113 |
return result["output_text"]
|
| 114 |
|
| 115 |
def one_day_summary(self,content) -> None:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
def extract_key_value_pair(self,content) -> None:
|
| 131 |
|
|
@@ -136,18 +154,31 @@ class KeyValueExtractor:
|
|
| 136 |
"""
|
| 137 |
|
| 138 |
try:
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
except Exception as e:
|
| 152 |
# If an error occurs during the key-value extraction process, log the error
|
| 153 |
logging.error(f"Error while extracting key-value pairs: {e}")
|
|
|
|
| 30 |
import pandas as pd
|
| 31 |
import nltk
|
| 32 |
from nltk.tokenize import sent_tokenize
|
| 33 |
+
from openai import OpenAI
|
| 34 |
+
|
| 35 |
|
| 36 |
class KeyValueExtractor:
|
| 37 |
|
|
|
|
| 44 |
pdf_file_path (str): The path to the input PDF file.
|
| 45 |
"""
|
| 46 |
self.model = "facebook/bart-large-mnli"
|
| 47 |
+
self.client = OpenAI()
|
| 48 |
|
| 49 |
|
| 50 |
def get_url(self,keyword):
|
|
|
|
| 116 |
return result["output_text"]
|
| 117 |
|
| 118 |
def one_day_summary(self,content) -> None:
|
| 119 |
+
conversation = [
|
| 120 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 121 |
+
{"role": "user", "content": f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```."}
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
# Call OpenAI GPT-3.5-turbo
|
| 125 |
+
chat_completion = self.client.chat.completions.create(
|
| 126 |
+
model = "gpt-3.5-turbo",
|
| 127 |
+
messages = conversation,
|
| 128 |
+
max_tokens=1000,
|
| 129 |
+
temperature=0
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
response = chat_completion.choices[0].message.content
|
| 133 |
+
return response
|
| 134 |
+
|
| 135 |
+
# # Use OpenAI's Completion API to analyze the text and extract key-value pairs
|
| 136 |
+
# response = openai.Completion.create(
|
| 137 |
+
# engine="text-davinci-003", # You can choose a different engine as well
|
| 138 |
+
# temperature = 0,
|
| 139 |
+
# prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.",
|
| 140 |
+
# max_tokens=1000 # You can adjust the length of the response
|
| 141 |
+
# )
|
| 142 |
+
|
| 143 |
+
# # Extract and return the chatbot's reply
|
| 144 |
+
# result = response['choices'][0]['text'].strip()
|
| 145 |
+
# print(result)
|
| 146 |
+
# return result
|
| 147 |
|
| 148 |
def extract_key_value_pair(self,content) -> None:
|
| 149 |
|
|
|
|
| 154 |
"""
|
| 155 |
|
| 156 |
try:
|
| 157 |
+
conversation = [
|
| 158 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 159 |
+
{"role": "user", "content": f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```."}
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
# Call OpenAI GPT-3.5-turbo
|
| 163 |
+
chat_completion = self.client.chat.completions.create(
|
| 164 |
+
model = "gpt-3.5-turbo",
|
| 165 |
+
messages = conversation,
|
| 166 |
+
max_tokens=1000,
|
| 167 |
+
temperature=0
|
| 168 |
+
)
|
| 169 |
+
response = chat_completion.choices[0].message.content
|
| 170 |
+
return response
|
| 171 |
+
# # Use OpenAI's Completion API to analyze the text and extract key-value pairs
|
| 172 |
+
# response = openai.Completion.create(
|
| 173 |
+
# engine="text-davinci-003", # You can choose a different engine as well
|
| 174 |
+
# temperature = 0,
|
| 175 |
+
# prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
|
| 176 |
+
# max_tokens=1000 # You can adjust the length of the response
|
| 177 |
+
# )
|
| 178 |
+
|
| 179 |
+
# # Extract and return the chatbot's reply
|
| 180 |
+
# result = response['choices'][0]['text'].strip()
|
| 181 |
+
# return result
|
| 182 |
except Exception as e:
|
| 183 |
# If an error occurs during the key-value extraction process, log the error
|
| 184 |
logging.error(f"Error while extracting key-value pairs: {e}")
|