from flask import Flask, request, jsonify from flask_cors import CORS import torch from transformers import AutoTokenizer, AutoModelForCausalLM import logging import os # Initialize logger logging.basicConfig(level=logging.DEBUG) # Load tokenizer and model logging.info("Loading model...") model_repo = "hsb06/toghetherAi-model" tokenizer = AutoTokenizer.from_pretrained(model_repo) model = AutoModelForCausalLM.from_pretrained(model_repo, torch_dtype=torch.float16).to("cuda" if torch.cuda.is_available() else "cpu") logging.info("Model loaded successfully.") # Initialize Flask app app = Flask(__name__) CORS(app) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True, ) token = outputs.sequences[0, input_length:] return tokenizer.decode(token, skip_special_tokens=True) @app.route("/", methods=["GET"]) def home(): return jsonify({"message": "Flask app is running!"}) @app.route("/chat", methods=["POST"]) def chat(): data = request.json user_input = data.get("message", "") prompt = f": {user_input}\n:" # Ensure prompt format matches your model's expectation response = generate_response(prompt) return jsonify({"response": response}) if __name__ == "__main__": from os import getenv app.run(host="0.0.0.0", port=int(getenv("PORT", 8080)))