chat-bot / app.py
Haseeb javed
10:30
3b34c62
from flask import Flask, request, jsonify
from flask_cors import CORS
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import os
# Initialize logger
logging.basicConfig(level=logging.DEBUG)
# Load tokenizer and model
logging.info("Loading model...")
model_repo = "hsb06/toghetherAi-model"
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = AutoModelForCausalLM.from_pretrained(model_repo, torch_dtype=torch.float16).to("cuda" if torch.cuda.is_available() else "cpu")
logging.info("Model loaded successfully.")
app = Flask(__name__)
CORS(app)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.7,
top_k=50,
return_dict_in_generate=True,
)
token = outputs.sequences[0, input_length:]
full_response = tokenizer.decode(token, skip_special_tokens=True)
if "<human>" in full_response:
trimmed_response = full_response.split("<human>")[0].strip()
else:
trimmed_response = full_response.strip()
logging.debug(f"Trimmed response: {trimmed_response}")
return trimmed_response
@app.route("/", methods=["GET"])
def home():
return jsonify({"message": "Flask app is running!"})
@app.route("/chat", methods=["POST"])
def chat():
data = request.json
user_input = data.get("message", "")
prompt = f"<human>: {user_input}\n<bot>:"
logging.info(f"User input: {user_input}")
logging.debug(f"Generated prompt: {prompt}")
response = generate_response(prompt)
logging.info(f"Generated response: {response}")
return jsonify({"response": response})
if __name__ == "__main__":
port = int(os.getenv("PORT", 7860))
logging.info(f"Starting Flask app on port {port}")
app.run(debug=False, host="0.0.0.0", port=port)