chat-bot / app.py
Haseeb javed
5:05pm
f4ed07c
raw
history blame
1.6 kB
from flask import Flask, request, jsonify
from flask_cors import CORS
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import os
# Initialize logger
logging.basicConfig(level=logging.DEBUG)
# Load tokenizer and model
logging.info("Loading model...")
model_repo = "hsb06/toghetherAi-model"
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = AutoModelForCausalLM.from_pretrained(model_repo, torch_dtype=torch.float16).to("cuda" if torch.cuda.is_available() else "cpu")
logging.info("Model loaded successfully.")
# Initialize Flask app
app = Flask(__name__)
CORS(app)
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.7,
top_k=50,
return_dict_in_generate=True,
)
token = outputs.sequences[0, input_length:]
return tokenizer.decode(token, skip_special_tokens=True)
@app.route("/", methods=["GET"])
def home():
return jsonify({"message": "Flask app is running!"})
@app.route("/chat", methods=["POST"])
def chat():
data = request.json
user_input = data.get("message", "")
prompt = f"<human>: {user_input}\n<bot>:" # Ensure prompt format matches your model's expectation
response = generate_response(prompt)
return jsonify({"response": response})
if __name__ == "__main__":
from os import getenv
app.run(host="0.0.0.0", port=int(getenv("PORT", 8080)))